Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2302362, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563704

RESUMO

Cerebral neural electronics play a crucial role in neuroscience research with increasing translational applications such as brain-computer interfaces for sensory input and motor output restoration. While widely utilized for decades, the understanding of the cellular mechanisms underlying this technology remains limited. Although two-photon microscopy (TPM) has shown great promise in imaging superficial neural electrodes, its application to deep-penetrating electrodes is technically difficult. Here, a novel device integrating transparent microelectrode arrays with glass microprisms, enabling electrophysiology recording and stimulation alongside TPM imaging across all cortical layers in a vertical plane, is introduced. Tested in Thy1-GCaMP6 mice for over 4 months, the integrated device demonstrates the capability for multisite electrophysiological recording/stimulation and simultaneous TPM calcium imaging. As a proof of concept, the impact of microstimulation amplitude, frequency, and depth on neural activation patterns is investigated using the setup. With future improvements in material stability and single unit yield, this multimodal tool greatly expands integrated electrophysiology and optical imaging from the superficial brain to the entire cortical column, opening new avenues for neuroscience research and neurotechnology development.

2.
Adv Sci (Weinh) ; : e2308212, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430532

RESUMO

Substantial evidence has shown that the Circadian Locomotor Output Cycles Kaput (Clock) gene is a core transcription factor of circadian rhythms that regulates dopamine (DA) synthesis. To shed light on the mechanism of this interaction, flexible multielectrode arrays (MEAs) are developed that can measure both DA concentrations and electrophysiology chronically. The dual functionality is enabled by conducting polymer PEDOT doped with acid-functionalized carbon nanotubes (CNT). The PEDOT/CNT microelectrode coating maintained stable electrochemical impedance and DA detection by square wave voltammetry for 4 weeks in vitro. When implanted in wild-type (WT) and Clock mutation (MU) mice, MEAs measured tonic DA concentration and extracellular neural activity with high spatial and temporal resolution for 4 weeks. A diurnal change of DA concentration in WT is observed, but not in MU, and a higher basal DA concentration and stronger cocaine-induced DA increase in MU. Meanwhile, striatal neuronal firing rate is found to be positively correlated with DA concentration in both animal groups. These findings offer new insights into DA dynamics in the context of circadian rhythm regulation, and the chronically reliable performance and dual measurement capability of this technology hold great potential for a broad range of neuroscience research.

3.
Micromachines (Basel) ; 15(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38399004

RESUMO

Flexible multielectrode arrays with glassy carbon (GC) electrodes and metal interconnection (hybrid MEAs) have shown promising performance in multi-channel neurochemical sensing. A primary challenge faced by hybrid MEAs fabrication is the adhesion of the metal traces with the GC electrodes, as prolonged electrical and mechanical stimulation can lead to adhesion failure. Previous devices with GC electrodes and interconnects made of a homogeneous material (all GC) demonstrated exceptional electrochemical stability but required miniaturization for enhanced tissue integration and chronic electrochemical sensing. In this study, we used two different methods for the fabrication of all GC-MEAs on thin flexible substrates with miniaturized features. The first method, like that previously reported, involves a double pattern-transfer photolithographic process, including transfer-bonding on temporary polymeric support. The second method requires a double-etching process, which uses a 2 µm-thick low stress silicon nitride coating of the Si wafer as the bottom insulator layer for the MEAs, bypassing the pattern-transfer and demonstrating a novel technique with potential advantages. We confirmed the feasibility of the two fabrication processes by verifying the practical conductivity of 3 µm-wide 2 µm-thick GC traces, the GC microelectrode functionality, and their sensing capability for the detection of serotonin using fast scan cyclic voltammetry. Through the exchange and discussion of insights regarding the strengths and limitations of these microfabrication methods, our goal is to propel the advancement of GC-based MEAs for the next generation of neural interface devices.

4.
Am J Physiol Heart Circ Physiol ; 325(6): H1304-H1317, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37737733

RESUMO

In the spinal cord, glutamate serves as the primary excitatory neurotransmitter. Monitoring spinal glutamate concentrations offers valuable insights into spinal neural processing. Consequently, spinal glutamate concentration has the potential to emerge as a useful biomarker for conditions characterized by increased spinal neural network activity, especially when uptake systems become dysfunctional. In this study, we developed a multichannel custom-made flexible glutamate-sensing probe for the large-animal model that is capable of measuring extracellular glutamate concentrations in real time and in vivo. We assessed the probe's sensitivity and specificity through in vitro and ex vivo experiments. Remarkably, this developed probe demonstrates nearly instantaneous glutamate detection and allows continuous monitoring of glutamate concentrations. Furthermore, we evaluated the mechanical and sensing performance of the probe in vivo, within the pig spinal cord. Moreover, we applied the glutamate-sensing method using the flexible probe in the context of myocardial ischemia-reperfusion (I/R) injury. During I/R injury, cardiac sensory neurons in the dorsal root ganglion transmit excitatory signals to the spinal cord, resulting in sympathetic activation that potentially leads to fatal arrhythmias. We have successfully shown that our developed glutamate-sensing method can detect this spinal network excitation during myocardial ischemia. This study illustrates a novel technique for measuring spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway.NEW & NOTEWORTHY In this study, we have developed a new flexible sensing probe to perform an in vivo measurement of spinal glutamate signaling in a large animal model. Our initial investigations involved precise testing of this probe in both in vitro and ex vivo environments. We accurately assessed the sensitivity and specificity of our glutamate-sensing probe and demonstrated its performance. We also evaluated the performance of our developed flexible probe during the insertion and compared it with the stiff probe during animal movement. Subsequently, we used this innovative technique to monitor the spinal glutamate signaling during myocardial ischemia and reperfusion that can cause fatal ventricular arrhythmias. We showed that glutamate concentration increases during the myocardial ischemia, persists during the reperfusion, and is associated with sympathoexcitation and increases in myocardial substrate excitability.


Assuntos
Doença da Artéria Coronariana , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Suínos , Animais , Ácido Glutâmico/metabolismo , Medula Espinal , Coração , Arritmias Cardíacas , Traumatismo por Reperfusão Miocárdica/metabolismo
5.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993301

RESUMO

Myocardial ischemia-reperfusion (IR) can cause ventricular arrhythmias and sudden cardiac death via sympathoexcitation. The spinal cord neural network is crucial in triggering these arrhythmias and evaluating its neurotransmitter activity during IR is critical for understanding ventricular excitability control. To assess the real-time in vivo spinal neural activity in a large animal model, we developed a flexible glutamate-sensing multielectrode array. To record the glutamate signaling during IR injury, we inserted the probe into the dorsal horn of the thoracic spinal cord at the T2-T3 where neural signals generated by the cardiac sensory neurons are processed and provide sympathoexcitatory feedback to the heart. Using the glutamate sensing probe, we found that the spinal neural network was excited during IR, especially after 15 mins, and remained elevated during reperfusion. Higher glutamate signaling was correlated with the reduction in the cardiac myocyte activation recovery interval, showing higher sympathoexcitation, as well as dispersion of the repolarization which is a marker for increased risk of arrhythmias. This study illustrates a new technique for measuring the spinal glutamate at different spinal cord levels as a surrogate for the spinal neural network activity during cardiac interventions that engage the cardio-spinal neural pathway.

6.
Biosens Bioelectron ; 230: 115242, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989659

RESUMO

Chronic sampling of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations in the brain is critical for tracking neurological disease development and the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of tonic 5-HT have not been reported. To fill this technological gap, we batch-fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) onto a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. To achieve detection of tonic 5-HT concentrations, we applied a poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) electrode coating and optimized a square wave voltammetry (SWV) waveform for selective 5-HT measurement. In vitro, the PEDOT/CNT-coated GC microelectrodes achieved high sensitivity to 5-HT, good fouling resistance, and excellent selectivity against the most common neurochemical interferents. In vivo, our PEDOT/CNT-coated GC MEAs successfully detected basal 5-HT concentrations at different locations within the CA2 region of the hippocampus of both anesthetized and awake mice. Furthermore, the PEDOT/CNT-coated MEAs were able to detect tonic 5-HT in the mouse hippocampus for one week after implantation. Histology reveals that the flexible GC MEA implants caused less tissue damage and reduced inflammatory response in the hippocampus compared to commercially available stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable, flexible sensor capable of chronic in vivo multi-site sensing of tonic 5-HT.


Assuntos
Técnicas Biossensoriais , Serotonina , Camundongos , Animais , Microeletrodos , Polímeros/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes
7.
Micromachines (Basel) ; 14(2)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36838023

RESUMO

The number of people aged 12 years and older using illicit drugs reached 59.3 million in 2020, among which 5.2 million are cocaine users based on the national data. In order to fully understand cocaine addiction and develop effective therapies, a tool is needed to reliably measure real-time cocaine concentration and neural activity in different regions of the brain with high spatial and temporal resolution. Integrated biochemical sensing devices based upon flexible microelectrode arrays (MEA) have emerged as a powerful tool for such purposes; however, MEAs suffer from undesired biofouling and inflammatory reactions, while those with immobilized biologic sensing elements experience additional failures due to biomolecule degradation. Aptasensors are powerful tools for building highly selective sensors for analytes that have been difficult to detect. In this work, DNA aptamer-based electrochemical cocaine sensors were integrated on flexible MEAs and protected with an antifouling zwitterionic poly (sulfobetaine methacrylate) (PSB) coating, in order to prevent sensors from biofouling and degradation by the host tissue. In vitro experiments showed that without the PSB coating, both adsorption of plasma protein albumin and exposure to DNase-1 enzyme have detrimental effects on sensor performance, decreasing signal amplitude and the sensitivity of the sensors. Albumin adsorption caused a 44.4% sensitivity loss, and DNase-1 exposure for 24 hr resulted in a 57.2% sensitivity reduction. The PSB coating successfully protected sensors from albumin fouling and DNase-1 enzyme digestion. In vivo tests showed that the PSB coated MEA aptasensors can detect repeated cocaine infusions in the brain for 3 hrs after implantation without sensitivity degradation. Additionally, the same MEAs can record electrophysiological signals at different tissue depths simultaneously. This novel flexible MEA with integrated cocaine sensors can serve as a valuable tool for understanding the mechanisms of cocaine addiction, while the PSB coating technology can be generalized to improve all implantable devices suffering from biofouling and inflammatory host responses.

8.
bioRxiv ; 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36711655

RESUMO

Real-time multi-channel measurements of tonic serotonin (5-hydroxytryptamine, 5-HT) concentrations across different brain regions are of utmost importance to the understanding of 5-HT’s role in anxiety, depression, and impulse control disorders, which will improve the diagnosis and treatment of these neuropsychiatric illnesses. Chronic sampling of 5-HT is critical in tracking disease development as well as the time course of pharmacological treatments. Despite their value, in vivo chronic multi-site measurements of 5-HT have not been reported. To fill this technological gap, we batch fabricated implantable glassy carbon (GC) microelectrode arrays (MEAs) on a flexible SU-8 substrate to provide an electrochemically stable and biocompatible device/tissue interface. Then, to achieve multi-site detection of tonic 5-HT concentrations, we incorporated the poly(3,4-ethylenedioxythiophene)/functionalized carbon nanotube (PEDOT/CNT) coating on the GC microelectrodes in combination with a new square wave voltammetry (SWV) approach, optimized for selective 5-HT measurement. In vitro , the PEDOT/CNT coated GC microelectrodes achieved high sensitivity towards 5-HT, good fouling resistance in the presence of 5-HT, and excellent selectivity towards the most common neurochemical interferents. In vivo , our PEDOT/CNT-coated GC MEAs were able to successfully detect basal 5-HT concentrations at different locations of the CA2 hippocampal region of mice in both anesthetized and awake head-fixed conditions. Furthermore, the implanted PEDOT/CNT-coated MEA achieved stable detection of tonic 5-HT concentrations for one week. Finally, histology data in the hippocampus shows reduced tissue damage and inflammatory responses compared to stiff silicon probes. To the best of our knowledge, this PEDOT/CNT-coated GC MEA is the first implantable flexible multisite sensor capable of chronic in vivo multi-site sensing of tonic 5-HT. This implantable MEA can be custom-designed according to specific brain region of interests and research questions, with the potential to combine electrophysiology recording and multiple analyte sensing to maximize our understanding of neurochemistry. Highlights: PEDOT/CNT-coated GC microelectrodes enabled sensitive and selective tonic detection of serotonin (5-HT) using a new square wave voltammetry (SWV) approach PEDOT/CNT-coated GC MEAs achieved multi-site in vivo 5-HT tonic detection for one week. Flexible MEAs lead to reduced tissue damage and inflammation compared to stiff silicon probes.

9.
Carbon N Y ; 188: 209-219, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36101831

RESUMO

Fabrication of heteroatom-doped graphene electrodes remains a challenging endeavor, especially on flexible substrates. Precise chemical and morphological control is even more challenging for patterned microelectrodes. We herein demonstrate a scalable process for directly generating micropatterns of heteroatom-doped porous graphene on polyimide with different backbones using a continuous-wave infrared laser. Conventional two-step polycondensation of 4,4'-oxydianiline with three different tetracarboxylic dianhydrides enabled the fabrication of fully aromatic polyimides with various internal linkages such as phenylene, trifluoromethyl or sulfone groups. Accordingly, we leverage this laser-induced polymer-to-doped-graphene conversion for fabricating electrically conductive microelectrodes with efficient utilization of heteroatoms (N-doped, F-doped, and S-doped). Tuning laser fluence enabled achieving electrical resistivity lower than ~13 Ω sq-1 for F-doped and N-doped graphene. Finally, our microelectrodes exhibit superior performance for electrochemical sensing of dopamine, one of the important neurotransmitters in the brain. Compared with carbon fiber microelectrodes, the gold standard in electrochemical dopamine sensing, our F-doped high surface area graphene microelectrodes demonstrated 3 order of magnitude higher sensitivity per unit area, detecting dopamine concentrations as low as 10 nM with excellent reproducibility. Hence, our approach is promising for facile fabrication of microelectrodes with superior capabilities for various electrochemical and sensing applications including early diagnosis of neurological disorders.

10.
iScience ; 25(8): 104845, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35996579

RESUMO

In vivo sensing of neurotransmitters has provided valuable insight into both healthy and diseased brain. However, chronically implanted Ag/AgCl reference electrodes suffer from degradationgradation, resulting in errors in the potential at the working electrode. Here, we report a simple, effective way to protect in vivo sensing measurements from reference polarization with a replaceable subcutaneously implanted reference. We compared a brain-implanted reference and a subcutaneous reference and observed no difference in impedance or dopamine redox peak separation in an acute preparation. Chronically, peak background potential and dopamine oxidation potential shifts were eliminated for three weeks. Scanning electron microscopy shows changes in surface morphology and composition of chronically implanted Ag/AgCl electrodes, and postmortem histology reveals extensive cell death and gliosis in the surrounding tissue. As accurate reference potentials are critical to in vivo electrochemistry applications, this simple technique can improve a wide and diverse assortment of in vivo preparations.

11.
Biosensors (Basel) ; 12(7)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35884343

RESUMO

Dopamine (DA) plays a central role in the modulation of various physiological brain functions, including learning, motivation, reward, and movement control. The DA dynamic occurs over multiple timescales, including fast phasic release, as a result of neuronal firing and slow tonic release, which regulates the phasic firing. Real-time measurements of tonic and phasic DA concentrations in the living brain can shed light on the mechanism of DA dynamics underlying behavioral and psychiatric disorders and on the action of pharmacological treatments targeting DA. Current state-of-the-art in vivo DA detection technologies are limited in either spatial or temporal resolution, channel count, longitudinal stability, and ability to measure both phasic and tonic dynamics. We present here an implantable glassy carbon (GC) multielectrode array on a SU-8 flexible substrate for integrated multichannel phasic and tonic measurements of DA concentrations. The GC MEA demonstrated in vivo multichannel fast-scan cyclic voltammetry (FSCV) detection of electrically stimulated phasic DA release simultaneously at different locations of the mouse dorsal striatum. Tonic DA measurement was enabled by coating GC electrodes with poly(3,4-ethylenedioxythiophene)/carbon nanotube (PEDOT/CNT) and using optimized square-wave voltammetry (SWV). Implanted PEDOT/CNT-coated MEAs achieved stable detection of tonic DA concentrations for up to 3 weeks in the mouse dorsal striatum. This is the first demonstration of implantable flexible MEA capable of multisite electrochemical sensing of both tonic and phasic DA dynamics in vivo with chronic stability.


Assuntos
Dopamina , Nanotubos de Carbono , Animais , Encéfalo , Corpo Estriado , Humanos , Camundongos
13.
J Neural Eng ; 18(4)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34404037

RESUMO

Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.


Assuntos
Carbono , Eletricidade , Condutividade Elétrica , Eletrodos , Metais
14.
Biosens Bioelectron ; 191: 113440, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171734

RESUMO

The development of a high sensitivity real-time sensor for multi-site detection of dopamine (DA) with high spatial and temporal resolution is of fundamental importance to study the complex spatial and temporal pattern of DA dynamics in the brain, thus improving the understanding and treatments of neurological and neuropsychiatric disorders. In response to this need, here we present high surface area out-of-plane grown three-dimensional (3D) fuzzy graphene (3DFG) microelectrode arrays (MEAs) for highly selective, sensitive, and stable DA electrochemical sensing. 3DFG microelectrodes present a remarkable sensitivity to DA (2.12 ± 0.05 nA/nM, with LOD of 364.44 ± 8.65 pM), the highest reported for nanocarbon MEAs using Fast Scan Cyclic Voltammetry (FSCV). The high surface area of 3DFG allows for miniaturization of electrode down to 2 × 2 µm2, without compromising the electrochemical performance. Moreover, 3DFG MEAs are electrochemically stable under 7.2 million scans of continuous FSCV cycling, present exceptional selectivity over the most common interferents in vitro with minimum fouling by electrochemical byproducts and can discriminate DA and serotonin (5-HT) in response to the injection of their 50:50 mixture. These results highlight the potential of 3DFG MEAs as a promising platform for FSCV based multi-site detection of DA with high sensitivity, selectivity, and spatial resolution.


Assuntos
Técnicas Biossensoriais , Grafite , Dopamina , Técnicas Eletroquímicas , Humanos , Microeletrodos
15.
Adv Healthc Mater ; 10(12): e2100119, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34029008

RESUMO

Electrical microstimulation has enabled partial restoration of vision, hearing, movement, somatosensation, as well as improving organ functions by electrically modulating neural activities. However, chronic microstimulation is faced with numerous challenges. The implantation of an electrode array into the neural tissue triggers an inflammatory response, which can be exacerbated by the delivery of electrical currents. Meanwhile, prolonged stimulation may lead to electrode material degradation., which can be accelerated by the hostile inflammatory environment. Both material degradation and adverse tissue reactions can compromise stimulation performance over time. For stable chronic electrical stimulation, an ideal microelectrode must present 1) high charge injection limit, to efficiently deliver charge without exceeding safety limits for both tissue and electrodes, 2) small size, to gain high spatial selectivity, 3) excellent biocompatibility that ensures tissue health immediately next to the device, and 4) stable in vivo electrochemical properties over the application period. In this review, the challenges in chronic microstimulation are described in detail. To aid material scientists interested in neural stimulation research, the in vitro and in vivo testing methods are introduced for assessing stimulation functionality and longevity and a detailed overview of recent advances in electrode material research and device fabrication for improving chronic microstimulation performance is provided.


Assuntos
Microeletrodos , Estimulação Elétrica , Eletrodos Implantados
16.
Analyst ; 146(12): 3955-3970, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33988202

RESUMO

Progress in real-time, simultaneous in vivo detection of multiple neurotransmitters will help accelerate advances in neuroscience research. The need for development of probes capable of stable electrochemical detection of rapid neurotransmitter fluctuations with high sensitivity and selectivity and sub-second temporal resolution has, therefore, become compelling. Additionally, a higher spatial resolution multi-channel capability is required to capture the complex neurotransmission dynamics across different brain regions. These research needs have inspired the introduction of glassy carbon (GC) microelectrode arrays on flexible polymer substrates through carbon MEMS (C-MEMS) microfabrication process followed by a novel pattern transfer technique. These implantable GC microelectrodes provide unique advantages in electrochemical detection of electroactive neurotransmitters through the presence of active carboxyl, carbonyl, and hydroxyl functional groups. In addition, they offer fast electron transfer kinetics, capacitive electrochemical behavior, and wide electrochemical window. Here, we combine the use of these GC microelectrodes with the fast scan cyclic voltammetry (FSCV) technique to optimize the co-detection of dopamine (DA) and serotonin (5-HT) in vitro and in vivo. We demonstrate that using optimized FSCV triangular waveform at scan rates ≤700 V s-1 and holding and switching at potentials of 0.4 and 1 V respectively, it is possible to discriminate voltage reduction and oxidation peaks of DA and 5-HT, with 5-HT contributing distinct multiple oxidation peaks. Taken together, our results present a compelling case for a carbon-based MEA platform rich with active functional groups that allows for repeatable and stable detection of electroactive multiple neurotransmitters at concentrations as low as 1.1 nM.


Assuntos
Dopamina , Serotonina , Carbono , Técnicas Eletroquímicas , Microeletrodos , Neurotransmissores
17.
Cereb Cortex ; 31(2): 1077-1089, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33068002

RESUMO

During primate arboreal locomotion, substrate orientation modifies body axis orientation and biomechanical contribution of fore- and hindlimbs. To characterize the role of cortical oscillations in integrating these locomotor demands, we recorded electrocorticographic activity from left dorsal premotor, primary motor, and supplementary motor cortices of three common marmosets moving across a branch-like small-diameter pole, fixed horizontally or vertically. Animals displayed behavioral adjustments to the task, namely, the horizontal condition mainly induced quadrupedal walk with pronated/neutral forelimb postures, whereas the vertical condition induced walk and bound gaits with supinated/neutral postures. Examination of cortical activity suggests that ß (16-35 Hz) and γ (75-100 Hz) oscillations could reflect different processes in locomotor adjustments. During task, modulation of γ ERS by substrate orientation (horizontal/vertical) and epoch (preparation/execution) suggests close tuning to movement dynamics and biomechanical demands. ß ERD was essentially modulated by gait (walk/bound), which could illustrate contribution to movement sequence and coordination. At rest, modulation of ß power by substrate orientation underlines its role in sensorimotor processes for postural maintenance.


Assuntos
Ritmo beta/fisiologia , Ritmo Gama/fisiologia , Locomoção/fisiologia , Córtex Motor/fisiologia , Animais , Callithrix , Eletrocorticografia/métodos , Masculino
18.
Front Bioeng Biotechnol ; 8: 602216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330433

RESUMO

Melatonin (MT) has been recently considered an excellent candidate for the treatment of sleep disorders, neural injuries, and neurological diseases. To better investigate the actions of MT in various brain functions, real-time detection of MT concentrations in specific brain regions is much desired. Previously, we have demonstrated detection of exogenously administered MT in anesthetized mouse brain using square wave voltammetry (SWV). Here, for the first time, we show successful detection of exogenous MT in the brain using fast scan cyclic voltammetry (FSCV) on electrochemically pre-activated carbon fiber microelectrodes (CFEs). In vitro evaluation showed the highest sensitivity (28.1 nA/µM) and lowest detection limit (20.2 ± 4.8 nM) ever reported for MT detection at carbon surface. Additionally, an extensive CFE stability and fouling assessment demonstrated that a prolonged CFE pre-conditioning stabilizes the background, in vitro and in vivo, and provides consistent CFE sensitivity over time even in the presence of a high MT concentration. Finally, the stable in vivo background, with minimized CFE fouling, allows us to achieve a drift-free FSCV detection of exogenous administered MT in mouse brain over a period of 3 min, which is significantly longer than the duration limit (usually < 90 s) for traditional in vivo FSCV acquisition. The MT concentration and dynamics measured by FSCV are in good agreement with SWV, while microdialysis further validated the concentration range. These results demonstrated reliable MT detection using FSCV that has the potential to monitor MT in the brain over long periods of time.

19.
J Neural Eng ; 17(4): 046005, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32521531

RESUMO

OBJECTIVE: In this study, we demonstrate practical applications of a novel 3-dimensional neural probe for simultaneous electrophysiological recordings from the surface of the brain as well as deep intra-cortical tissue. We used this 3D probe to investigate signal propagation mechanisms between neuronal cells and their responses to stimuli in a 3D fashion. APPROACH: This novel probe leverage 2D thin-film microfabrication technique to combine an epi-cortical (surface) and an intra-cortical (depth) microelectrode arrays (Epi-Intra), that unfold into an origami 3D-like probe during brain implantation. The flexible epi-cortical component conforms to the brain surface while the intra-cortical array is reinforced with stiffer durimide polymer layer for ease of tissue penetration. The microelectrodes are made of glassy carbon material that is biocompatible and has low electrochemical impedance that is important for high fidelity neuronal recordings. These recordings were performed on the auditory region of anesthetized European starling songbirds during playback of conspecific songs as auditory stimuli. MAIN RESULTS: The Epi-Intra probe recorded broadband activity including local field potentials (LFPs) signals as well as single-unit activity and multi-unit activity from both surface and deep brain. The majority of recorded cellular activities were stimulus-locked and exhibited low noise. Notably, while LFPs recorded on surface and depth electrodes did not exhibit strong correlation, composite receptive fields (CRFs)-extracted from individual neuron cells through a non-linear model and that are cell-dependent-were correlated. SIGNIFICANCE: These findings demonstrate that CRFs extracted from Epi-Intra recordings are excellent candidates for neural coding and for understanding the relationship between sensory neuronal responses and their stimuli (stimulus encoding). Beyond CRFs, this novel neural probe may enable new spatiotemporal 3D volumetric mapping to address, with cellular resolution, how the brain coordinates function.


Assuntos
Carbono , Neurônios , Eletrodos Implantados , Microeletrodos , Polímeros
20.
Analyst ; 145(7): 2612-2620, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32073100

RESUMO

Melatonin (MT) is an important electroactive hormone that regulates different physiological actions in the brain, ranging from circadian clock to neurodegeneration. An impressive number of publications have highlighted the effectiveness of MT treatments in different types of sleep and neurological disorders, including Alzheimer's and Parkinson's disease. The ability to detect MT in different regions of the brain would provide further insights into the physiological roles and therapeutic effects of MT. While multiple electrochemical methods have been used to detect MT in biological samples, monitoring MT in the brain of live animals has not been demonstrated. Here, we optimized a square wave voltammetry (SWV) electroanalytical method to evaluate the MT detection performance at CFEs in vitro and in vivo. SWV was able to sensitively detect the MT oxidation peak at 0.7 V, and discriminate MT from most common interferents in vitro. More importantly, using the optimized SWV, CFEs successfully detected and reliably quantified MT concentrations in the visual cortex of anesthetized mice after intraperitoneal injections of different MT doses, offering stable MT signals for up to 40 minutes. To the best of our knowledge, this is the first electrochemical measurement of exogenously administered MT in vivo. This electrochemical MT sensing technique will provide a powerful tool for further understanding MT's action in the brain.


Assuntos
Encéfalo/metabolismo , Técnicas Eletroquímicas/métodos , Melatonina/análise , Animais , Carbono/química , Eletrodos , Injeções Intraperitoneais , Masculino , Melatonina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...