Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 101(8): 1075-85, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27219629

RESUMO

NEW FINDINGS: What is the central question of this study? We investigated the effects of physical training on phenotypic (fibre-type content) and myogenic features (MyoD and myogenin expression) in skeletal muscle during the transition from cardiac hypertrophy to heart failure. What is the main finding and its importance? We provide new insight into skeletal muscle adaptations by showing that physical training increases the type I fibre content during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin expression. These results have important clinical implications for patients with heart failure, because this population has reduced muscle oxidative capacity. The purpose of this study was to investigate the effects of physical training (PT) on phenotypic features (fibre-type content) and myogenic regulatory factors (MyoD and myogenin) in rat skeletal muscle during the transition from cardiac hypertrophy to heart failure. We used the model of ascending aortic stenosis (AS) to induce heart failure in male Wistar rats. Sham-operated animals were used as age-matched controls. At 18 weeks after surgery, rats with ventricular dysfunction were randomized into the following four groups: sham-operated, untrained (Sham-U; n = 8); sham-operated, trained (Sham-T; n = 6); aortic stenosis, untrained (AS-U; n = 6); and aortic stenosis, trained (AS-T; n = 8). The AS-T and Sham-T groups were submitted to a 10 week aerobic PT programme, while the AS-U and Sham-U groups remained untrained for the same period of time. After the PT programme, the animals were killed and the soleus muscles collected for phenotypic and molecular analyses. Physical training promoted type IIa-to-I fibre conversion in the trained groups (Sham-T and AS-T) compared with the untrained groups (Sham-U and AS-U). No significant (P > 0.05) differences were found in type I or IIa fibre content in the AS-U group compared with the Sham-U group. Additionally, there were no significant (P > 0.05) differences in the myogenic regulatory factors MyoD and myogenin (gene and protein) expression between the groups. Therefore, our results indicate that PT may be a suitable strategy to improve the oxidative phenotype in skeletal muscle during the transition from cardiac hypertrophy to heart failure, without altering MyoD and myogenin.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/patologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Proteína MyoD/metabolismo , Miogenina/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Oxirredução , Ratos , Ratos Wistar
2.
J Mol Histol ; 43(5): 461-71, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22538480

RESUMO

Stimuli during pregnancy, such as protein restriction, can affect morphophysiological parameters in the offspring with consequences in adulthood. The phenomenon known as fetal programming can cause short- and long-term changes in the skeletal muscle phenotype. We investigated the morphology and the myogenic regulatory factors (MRFs) MyoD and myogenin expression in soleus, SOL; oxidative and slow twitching and in extensor digitorum longus, EDL; glycolytic and fast twitching muscles in the offspring of dams subjected to protein restriction during pregnancy. Four groups of male Wistar offspring rats were studied. Offspring from dams fed a low-protein diet (6 % protein, LP) and normal protein diet (17 % protein, NP) were euthanized at 30 and 112 days old, and their muscles were removed and kept at -80 °C. Muscles histological sections (8 µm) were submitted to a myofibrillar adenosine triphosphatase histochemistry reaction for morphometric analysis. Gene and protein expression levels of MyoD and myogenin were determined by RT-qPCR and western blotting. The major findings observed were distinct patterns of morphological changes in SOL and EDL muscles in LP offspring at 30 and 112 days old without changes in MRFs MyoD and myogenin expression. Our results indicate that maternal protein restriction followed by normal diet after birth induced morphological changes in muscles with distinct morphofunctional characteristics over the long term, but did not alter the MRFs MyoD and myogenin expression. Further studies are necessary to better understand the mechanisms underlying the maternal protein restriction response on skeletal muscle.


Assuntos
Desenvolvimento Fetal , Músculo Esquelético , Proteína MyoD , Miogenina , Animais , Dieta com Restrição de Proteínas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , Gravidez , Complicações na Gravidez/metabolismo , Ratos , Ratos Wistar
3.
J Mol Histol ; 42(6): 557-65, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21928074

RESUMO

HF is syndrome initiated by a reduction in cardiac function and it is characterized by the activation of compensatory mechanisms. Muscular fatigue and dyspnoea are the more common symptoms in HF; these may be due in part to specific skeletal muscle myopathy characterized by reduced oxidative capacity, a shift from slow fatigue resistant type I to fast less fatigue resistant type II fibers and downregulation of myogenic regulatory factors (MRFs) gene expression that can regulate gene expression of nicotinic acetylcholine receptors (nAChRs). In chronic heart failure, skeletal muscle phenotypic changes could influence the maintenance of the neuromuscular junction morphology and nAChRs gene expression during this syndrome. Two groups of rats were studied: control (CT) and Heart Failure (HF), induced by a single intraperitoneal injection of monocrotaline (MCT). At the end of the experiment, HF was evaluated by clinical signs and animals were sacrificed. Soleus (SOL) muscles were removed and processed for morphological, morphometric and molecular NMJ analyses. Our major finding was an up-regulation in the gene expression of the alpha1 and epsilon subunits of nAChR and a spot pattern of nAChR in SOL skeletal muscle in this acute monocrotaline induced HF. Our results suggest a remodeling of nAChR alpha1 and epsilon subunit during heart failure and may provide valuable information for understanding the skeletal muscle myopathy that occurs during this syndrome.


Assuntos
Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Receptores Nicotínicos/biossíntese , Animais , Expressão Gênica , Insuficiência Cardíaca/genética , Masculino , Músculo Esquelético/ultraestrutura , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Junção Neuromuscular/genética , Junção Neuromuscular/ultraestrutura , Ratos , Ratos Wistar , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Regulação para Cima
4.
J Mol Histol ; 41(1): 81-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20349269

RESUMO

Heart failure (HF) is characterized by a reduced tolerance to exercise due to early fatigue and dyspnea; this may be due in part to skeletal muscle myopathy with a shift from slow to fast fibers and loss of muscle mass. Muscle wasting does not occur similarly in all types of muscle fiber, thus we tested the hypothesis that HF induces skeletal muscle atrophy in a fiber type-specific manner altering the expression of atrogin-1 and MuRF1 in a fast muscle of rats with monocrotaline-induced heart failure. We studied extensor digitorum longus (EDL) muscle from both HF and control Wistar rats. Atrogin-1 and MuRF1 mRNA content were determined using Real-Time RT-qPCR while muscle fiber cross-sectional area (CSA) from sections stained histochemically for myofibrillar ATPase were used as an index of type-specific fiber atrophy. The measurement of gene expression by RT-qPCR revealed that EDL muscle mRNA expression of MuRF1 and atrogin-1 was significantly increased in the HF group. Muscle fiber type IIB CSA decreased in the HF group compared to the CT group; there was no significant difference in muscle fiber types I and IIA/D CSA between the HF and CT groups. In conclusion, we showed that HF induces fiber type IIB specific atrophy, up-regulating atrogin-1 and MuRF1 mRNA expression in EDL muscle of monocrotaline treated rats.


Assuntos
Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/genética , Atrofia Muscular/genética , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitina-Proteína Ligases/genética , Animais , Insuficiência Cardíaca/patologia , Masculino , Monocrotalina , Proteínas Musculares/metabolismo , Atrofia Muscular/patologia , Especificidade de Órgãos/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...