Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 236: 115696, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37713983

RESUMO

Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.


Assuntos
Medicamentos Biossimilares , Medicamentos Biossimilares/química , Espectrometria de Massas/métodos , Espectrometria de Massa com Troca Hidrogênio-Deutério
2.
Anal Chem ; 95(8): 3932-3939, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36791123

RESUMO

Post-translational modifications (PTMs) not only substantially increase structural heterogeneity of proteins but can also alter the conformation or even biological functions. Monitoring of these PTMs is particularly important for therapeutic products, including monoclonal antibodies (mAbs), since their efficacy and safety may depend on the PTM profile. Innovative analytical strategies should be developed to map these PTMs as well as explore possible induced conformational changes. Cation-exchange chromatography (CEX) coupled with native mass spectrometry has already emerged as a valuable asset for the characterization of mAb charge variants. Nevertheless, questions regarding protein conformation cannot be explored using this approach. Thus, we have combined CEX separation with collision-induced unfolding (CIU) experiments to monitor the unfolding pattern of separated mAbs and thereby pick up subtle conformational differences without impairing the CEX resolution. Using this novel strategy, only four CEX-CIU runs had to be recorded for a complete CIU fingerprint either at the intact mAb level or after enzymatic digestion at the mAb subunit level. As a proof of concept, CEX-CIU was first used for an isobaric mAb mixture to highlight the possibility to acquire individual CIU fingerprints of CEX-separated species without compromising CEX separation performances. CEX-CIU was next successfully applied to conformational characterization of mAb glyco-variants, in order to derive glycoform-specific information on the gas-phase unfolding, and CIU patterns of Fc fragments, revealing increased resistance of sialylated glycoforms against gas-phase unfolding. Altogether, we demonstrated the possibilities and benefits of combining CEX with CIU for in-depth characterization of mAb glycoforms, paving the way for linking conformational changes and resistance to gas-phase unfolding charge variants.


Assuntos
Anticorpos Monoclonais , Cromatografia , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Conformação Proteica , Cromatografia por Troca Iônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA