Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37835730

RESUMO

Besides living as a free-ranging primate in the horn of Africa and the Arabian Peninsula, the hamadryas baboon has an important place in zoos and can be found in biomedical research centers worldwide. To be valuable as a non-human primate laboratory model for man, its anatomy should be portrayed in detail, allowing for the correct interpretation and translation of obtained research results. Reviewing the literature on the use of the baboon in biomedical research revealed that very limited anatomical works on this species are available. Anatomical atlases are incomplete, use archaic nomenclature and fail to provide high-definition color photographs. Therefore, the skeletons of two male hamadryas baboons were prepared by manually removing as much soft tissues as possible followed by maceration in warm water to which enzyme-containing washing powder was added. The bones were bleached with hydrogen peroxide and degreased by means of methylene chloride. Photographs of the various bones were taken, and the anatomical structures were identified using the latest version of the Nomina Anatomica Veterinaria. As such, the present article shows 31 annotated multipanel figures. The skeleton of the hamadryas baboon generally parallels the human skeleton, but some remarkable differences have been noticed. If these are taken into consideration when evaluating the results of experiments using the hamadryas baboon, justified conclusions can be drawn.

2.
Liver Int ; 43(10): 2309-2319, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37403133

RESUMO

BACKGROUND & AIMS: Patients with non-alcoholic fatty liver disease (NAFLD) have impaired liver regeneration. Liver endothelial cells play a key role in liver regeneration. In non-alcoholic steatohepatitis (NASH), liver endothelial cells display a defect in autophagy, contributing to NASH progression. We aimed to determine the role of endothelial autophagy in liver regeneration following liver resection in NAFLD. METHODS: First, we assessed autophagy in primary endothelial cells from wild type mice fed a high fat diet and subjected to partial hepatectomy. Then, we assessed liver regeneration after partial hepatectomy in mice deficient (Atg5lox/lox ;VE-cadherin-Cre+ ) or not (Atg5lox/lox ) in endothelial autophagy and fed a high fat diet. The role of endothelial autophagy in liver regeneration was also assessed in ApoE-/- hypercholesterolemic mice and in mice with NASH induced by methionine- and choline-deficient diet. RESULTS: First, autophagy (LC3II/protein) was strongly increased in liver endothelial cells following hepatectomy. Then, we observed at 40 and 48 h and at 7 days after partial hepatectomy, that Atg5lox/lox ;VE-cadherin-Cre+ mice fed a high fat diet had similar liver weight, plasma AST, ALT and albumin concentration, and liver protein expression of proliferation (PCNA), cell-cycle (Cyclin D1, BrdU incorporation, phospho-Histone H3) and apoptosis markers (cleaved Caspase-3) as Atg5lox/lox mice fed a high fat diet. Same results were obtained in ApoE-/- and methionine- and choline-deficient diet fed mice, 40 h after hepatectomy. CONCLUSION: These results demonstrate that the defect in endothelial autophagy occurring in NASH does not account for the impaired liver regeneration occurring in this setting.


Assuntos
Hiperplasia Nodular Focal do Fígado , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatectomia/métodos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regeneração Hepática , Células Endoteliais/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica , Colina/metabolismo , Metionina/metabolismo , Autofagia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
PLoS One ; 18(5): e0286455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37235602

RESUMO

Monitoring chronic stress in pigs is not only essential in view of animal welfare but is also important for the farmer, given that stress influences the zootechnical performance of the pigs and increases their susceptibility to infectious diseases. To investigate the use of saliva as a non-invasive, objective chronic stress monitoring tool, twenty-four 4-day-old piglets were transferred to artificial brooders. At the age of 7 days, they were assigned to either the control or the stressed group and reared for three weeks. Piglets in the stressed group were exposed to overcrowding, absence of cage enrichment, and frequent mixing of animals between pens. Shotgun analysis using an isobaric labelling method (iTRAQ) for tandem mass spectrometry performed on saliva samples taken after three weeks of chronic stress identified 392 proteins, of which 20 proteins displayed significantly altered concentrations. From these 20 proteins, eight were selected for further validation using parallel reaction monitoring (PRM). For this validation, saliva samples that were taken one week after the start of the experiment and samples that were taken at the end of the experiment were analysed to verify the profile over time. We wanted to investigate whether the candidate biomarkers responded fast or rather slowly to the onset of chronic exposure to multiple stressors. Furthermore, this validation could indicate whether age influenced the baseline concentrations of these salivary proteins, both in healthy and stressed animals. This targeted PRM analysis confirmed that alpha-2-HS-glycoprotein was upregulated in the stressed group after one and three weeks, while odorant-binding protein, chitinase, long palate lung and nasal epithelium protein 5, lipocalin-1, and vomeromodulin-like protein were present in lower concentrations in the saliva of the stressed pigs, albeit only after three weeks. These results indicate that the porcine salivary proteome is altered by chronic exposure to multiple stressors. The affected proteins could be used as salivary biomarkers to identify welfare problems at the farm and facilitate research to optimise rearing conditions.


Assuntos
Proteoma , Proteínas e Peptídeos Salivares , Animais , Suínos , Proteoma/metabolismo , Biomarcadores/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Saliva/metabolismo , Bem-Estar do Animal
4.
Vet Sci ; 10(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977211

RESUMO

The rhesus monkey (Macaca mulatta) is a widely used model in biomedical research because its anatomy and physiology bear many similarities to those of humans. Extensive knowledge of the anatomy of this nonhuman primate species is not only required for the correct interpretation of obtained research data but also valuable for the welfare of captive individuals housed in, e.g., zoos. As anatomical publications on the rhesus monkey are hardly available, outdated and provide only line drawings or black-and-white photographs, the anatomy of the rhesus monkey was readdressed in this study. The various anatomical structures are described in relation to each other topographically per hindlimb region. The hip region, the upper limb, the knee, the lower limb and the foot are described from various perspectives. The structures that are visible in the different layers, from the superficial to the deepest layer, were photographed. Although the anatomy of the hindlimbs of rhesus monkeys and humans are remarkably similar, various subtle dissimilarities have been observed. Consequently, an open-access publication that focuses on the anatomy of the rhesus monkey would be highly valued by both biomedical researchers and veterinarians.

5.
Vet Sci ; 10(2)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36851468

RESUMO

Since the rhesus monkey (Macaca mulatta) is genetically closely related to man, it is generally accepted that its anatomy and physiology are largely similar to that of humans. Consequently, this non-human primate is most commonly used as a model in biomedical research. Not only the validation of the obtained research data, but also the welfare of the captive rhesus monkeys are subject to thorough anatomical knowledge of this species. Unfortunately, anatomical literature on the rhesus monkey is scarce, outdated, and hardly available at present. Furthermore, its anatomy is only illustrated by means of line drawings or black-and-white photographs. Thus, the aim of this study was to describe the anatomy of the thoracic limb of the rhesus monkey topographically, studying the various anatomical structures in relation to each other. In this manuscript, the anatomy of the thoracic limb is described per region. The structures that are visible on the different layers, from the superficial to the deepest layer, are described both in text and in numerous color images. As expected, the anatomy of the rhesus monkey is almost identical to human anatomy. However, some striking differences have been identified. This supports the necessity for an extensive publication on the anatomy of the rhesus monkey.

6.
JHEP Rep ; 4(2): 100412, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35036886

RESUMO

BACKGROUND & AIMS: Intrahepatic vascular resistance is increased in early non-alcoholic fatty liver disease (NAFLD), potentially leading to tissue hypoxia and triggering disease progression. Hepatic vascular hyperreactivity to vasoconstrictors has been identified as an underlying mechanism. This study investigates vasoconstrictive agonism and antagonism in 2 models of early NAFLD and in non-alcoholic steatohepatitis (NASH). METHODS: The effects of endothelin-1 (ET-1), angiotensin II (ATII) and thromboxane A2 (TxA2) agonism and antagonism were studied by in situ ex vivo liver perfusion and preventive/therapeutic treatment experiments in a methionine-choline-deficient diet model of steatosis. Furthermore, important results were validated in Zucker fatty rats after 4 or 8 weeks of high-fat high-fructose diet feeding. In vivo systemic and portal pressures, ex vivo transhepatic pressure gradients (THPG) and transaminase levels were measured. Liver tissue was harvested for structural and mRNA analysis. RESULTS: The THPG and consequent portal pressure were significantly increased in both models of steatosis and in NASH. ET-1, ATII and TxA2 increased the THPG even further. Bosentan (ET-1 receptor antagonist), valsartan (ATII receptor blocker) and celecoxib (COX-2 inhibitor) attenuated or even normalised the increased THPG in steatosis. Simultaneously, bosentan and valsartan treatment improved transaminase levels. Moreover, bosentan was able to mitigate the degree of steatosis and restored the disrupted microvascular structure. Finally, beneficial vascular effects of bosentan endured in NASH. CONCLUSIONS: Antagonism of vasoconstrictive mediators improves intrahepatic vascular function. Both ET-1 and ATII antagonists showed additional benefit and bosentan even mitigated steatosis and structural liver damage. In conclusion, vasoconstrictive antagonism is a potentially promising therapeutic option for the treatment of early NAFLD. LAY SUMMARY: In non-alcoholic fatty liver disease (NAFLD), hepatic blood flow is impaired and the blood pressure in the liver blood vessels is increased as a result of an increased response of the liver vasculature to vasoconstrictors. Using drugs to block the constriction of the intrahepatic vasculature, the resistance of the liver blood vessels decreases and the increased portal pressure is reduced. Moreover, blocking the vasoconstrictive endothelin-1 pathway restored parenchymal architecture and reduced disease severity.

7.
Hum Mol Genet ; 29(9): 1476-1488, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32307537

RESUMO

Arterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicated GLUT10 in the transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations did not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in mouse. Gulo;Slc2a10 double knock-out mice showed mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 double knock-out mice did not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. Transforming growth factor beta signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 double knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.


Assuntos
Artérias/anormalidades , Deficiência de Ácido Ascórbico/genética , Proteínas Facilitadoras de Transporte de Glucose/genética , Instabilidade Articular/genética , L-Gulonolactona Oxidase/genética , Dermatopatias Genéticas/genética , Malformações Vasculares/genética , Animais , Artérias/metabolismo , Artérias/patologia , Ácido Ascórbico/biossíntese , Ácido Ascórbico/genética , Deficiência de Ácido Ascórbico/metabolismo , Deficiência de Ácido Ascórbico/patologia , Modelos Animais de Doenças , Homozigoto , Humanos , Instabilidade Articular/metabolismo , Instabilidade Articular/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Respiração/genética , Transdução de Sinais/genética , Dermatopatias Genéticas/metabolismo , Dermatopatias Genéticas/patologia , Malformações Vasculares/metabolismo , Malformações Vasculares/patologia
8.
Anat Histol Embryol ; 48(6): 591-604, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31120632

RESUMO

Corrosion casting is the technique by which a solid, negative replica is created from a hollow anatomical structure and liberated from its surrounding tissues. For centuries, different types of hardening substances have been developed to create such casts, but nowadays, thermosetting polymers are mostly used as casting medium. Although the principle and initial set-up are relatively easy, producing high-quality casts that serve their intended purpose can be quite challenging. This paper evaluates some of the more popular casting resins that are currently available and provides a step-by-step overview of the corrosion casting procedure, including surface casts of anatomical structures. Hurdles and pitfalls are discussed, along with possible solutions to circumvent them, based on personal experience by the authors.


Assuntos
Anatomia/métodos , Molde por Corrosão/métodos , Animais , Humanos , Modelos Anatômicos , Polímeros
9.
J Proteomics ; 196: 92-105, 2019 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-30707949

RESUMO

To expand the knowledge on the porcine salivary proteome, secretions from the three major salivary glands were collected from anaesthetised piglets. Pilocarpine and isoproterenol were simultaneously injected intraperitoneally to increase the volume and protein concentration of the saliva, respectively. The protein composition and relative protein-specific abundance of saliva secreted by the parotid gland and by the mandibular and monostomatic sublingual gland, were determined using iTRAQ. When combining two detection methods, MALDI-TOF/TOF MS and Q-Exactive orbitrap MS/MS, a total of 122 porcine salivary proteins and 6 mammalian salivary proteins with a predicted porcine homolog were identified. Only a quantitative and not a qualitative difference was observed between both ductal secretions. The 128 proteins were detected in both secretions, however, at different levels. Twenty-four proteins (20 porcine and 4 mammalian with a predicted porcine homolog) were predominantly secreted by the parotid gland, such as carbonic anhydrase VI and alpha-amylase. Twenty-nine proteins (all porcine) were predominantly secreted by the mandibular and sublingual glands, for example salivary lipocalin and submaxillary apomucin protein. Data are available via ProteomeXchange with identifier PXD008853. SIGNIFICANCE: In humans, more than 3000 salivary proteins have been identified. To our knowledge, previous studies on porcine saliva only identified a total of 34 proteins. This research increased the total number of identified proteins in porcine saliva to 143. This insight into the porcine salivary proteome will facilitate the search for potential biomarkers that may help in the early detection of pathologies and follow-up of animal welfare. Moreover, it can also endorse the value of a porcine animal model and contribute to a better understanding of the animal's physiology. Additionally, this was the first study to collect and analyse gland specific saliva of pigs. The obtained relative-quantitative knowledge of the identified proteins is valuable when comparing data of stimulated (chewing on a device) vs. unstimulated (passive) saliva collection in the future, since salivary stimulation changes the relative contribution of the major salivary glands to the whole saliva in the oral cavity. For example, carbonic anhydrase VI, which is present in higher concentrations in parotid saliva, has a higher concentration in stimulated whole saliva because of the larger contribution of the parotid gland after stimulation by chewing.


Assuntos
Glândula Parótida/metabolismo , Proteoma/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Glândula Sublingual/metabolismo , Animais , Isoproterenol/farmacologia , Pilocarpina/farmacologia , Suínos
10.
Hepatology ; 69(3): 1087-1104, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30259536

RESUMO

Angiogenesis contributes to the development of nonalcoholic steatohepatitis (NASH) and promotes inflammation, fibrosis, and progression to hepatocellular carcinoma (HCC). Angiopoietin-2 (Ang-2) is a key regulator of angiogenesis. We aimed to investigate the role of Ang-2 and its potential as a therapeutic target in NASH using human samples, in vivo mouse models, and in vitro assays. Serum Ang-2 levels were determined in 104 obese patients undergoing bariatric surgery and concomitant liver biopsy. The effect of the Ang-2/Tie2 receptor inhibiting peptibody L1-10 was evaluated in the methionine-choline deficient (MCD) and streptozotocin-western diet nonalcoholic fatty liver disease mouse models, and in vitro on endothelial cells and bone marrow-derived macrophages. The hepatic vasculature was visualized with µCT scans and scanning electron microscopy of vascular casts. Serum Ang-2 levels were increased in patients with histological NASH compared with patients with simple steatosis and correlated with hepatic CD34 immunoreactivity as a marker of hepatic angiogenesis. Serum and hepatic Ang-2 levels were similarly increased in mice with steatohepatitis. Both preventive and therapeutic L1-10 treatment reduced hepatocyte ballooning and fibrosis in MCD diet-fed mice and was associated with reduced hepatic angiogenesis and normalization of the vascular micro-architecture. Liver-isolated endothelial cells and monocytes from MCD-fed L1-10-treated mice showed reduced expression of leukocyte adhesion and inflammatory markers, respectively, compared with cells from untreated MCD diet-fed mice. In the streptozotocin-western diet model, therapeutic Ang-2 inhibition was able to reverse NASH and attenuate HCC progression. In vitro, L1-10 treatment mitigated increased cytokine production in lipopolysaccharide-stimulated endothelial cells but not in macrophages. Conclusion: Our findings provide evidence for Ang-2 inhibition as a therapeutic strategy to target pathological angiogenesis in NASH.


Assuntos
Angiopoietina-2/fisiologia , Fígado/irrigação sanguínea , Neovascularização Patológica , Hepatopatia Gordurosa não Alcoólica/etiologia , Adulto , Angiopoietina-2/antagonistas & inibidores , Angiopoietina-2/sangue , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neovascularização Patológica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Estudos Prospectivos
11.
Vet Immunol Immunopathol ; 206: 9-15, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30502915

RESUMO

Selection for prolificacy in modern pig farming has resulted in increasing litter sizes. Since rearing large litters is challenging, artificial rearing of piglets with a milk replacer is an alternative strategy. It is hypothesized that the development of the piglets' mucosa-associated lymphoid tissues (MALT) is affected by these artificial conditions. Therefore, the stereologically estimated volumes of the tonsil of the soft palate, and the lingual, nasopharyngeal and paraepiglottic tonsils, as well as the jejunal and ileal Peyer's patches were statistically compared at day 21 postpartum between six conventionally reared piglets and six piglets that were artificially reared from day 7 onwards. In addition, six 7-day-old sow-fed piglets were examined to evaluate the effect of age. All tonsils and Peyer's patches significantly increased in volume with age. The rearing strategy had no significant effect on the volumes of the tonsil of the soft palate and the lingual tonsil. The former tonsil was by far the largest with a mean volume of 967.2 ± 122.4 mm3 and 822.3 ± 125.4 mm3 in the conventionally and artificially reared piglets, respectively. The lingual tonsil only measured 9.4 ± 6.4 mm3 and 6.3 ± 2.6 mm3 in conventionally and artificially reared groups, respectively. In contrast, the rearing strategy did affect the volumes of the nasopharyngeal and paraepiglottic tonsils, which had a mean volume of 137.1 ± 32.4 mm3 and 84.4 ± 26.9 mm3, and 30.7 ± 7.8 mm3 and 20.0 ± 3.9 mm3 in conventionally and artificially reared piglets, respectively. The rearing strategy did not affect the development of the Peyer's patches. At day 21, the jejunal Peyer's patches of the conventionally and artificially reared piglets presented a volume of 1.6 ± 0.4 cm3 and 1.3 ± 0.2 cm3, respectively. The volumes of the ileal Peyer's patch amounted to 15.1 ± 3.0 cm³ in conventionally reared piglets and 12.0 ± 2.6 cm³ in artificially reared piglets at day 21. The results showed that artificial rearing hampers the morphological development of the tonsils that are exposed to inhaled antigens, but the voluminous lymphoid tissues that sample oral antigens are not influenced. Since it is unlikely that the observed differences in both tonsils are due to the milk replacer, artificial rearing could be a valuable alternative for raising large litters. In addition, the presence of developing MALT in piglets allows for investigating the value of nasal and oral vaccination in this species for human or veterinary purposes.


Assuntos
Ração Animal , Intestino Delgado/crescimento & desenvolvimento , Substitutos do Leite/farmacologia , Tonsila Palatina/crescimento & desenvolvimento , Nódulos Linfáticos Agregados/crescimento & desenvolvimento , Suínos/crescimento & desenvolvimento , Criação de Animais Domésticos/métodos , Animais , Feminino , Intestino Delgado/anatomia & histologia , Intestino Delgado/efeitos dos fármacos , Masculino , Tamanho do Órgão , Tonsila Palatina/anatomia & histologia , Tonsila Palatina/efeitos dos fármacos , Nódulos Linfáticos Agregados/anatomia & histologia , Nódulos Linfáticos Agregados/efeitos dos fármacos , Distribuição Aleatória , Suínos/anatomia & histologia
12.
Data Brief ; 16: 644-648, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29541660

RESUMO

This article represents data regarding a study published in Toxicology in vitro entitled " in vitro CYP-mediated drug metabolism in the zebrafish (embryo) using human reference compounds" (Saad et al., 2017) [1]. Data were acquired with ultra-performance liquid chromatography - accurate mass mass spectrometry (UPLC-amMS). A full spectrum scan was conducted for the testosterone (TST) metabolites from the microsomal stability assay in zebrafish and humans. The microsomal proteins were extracted from adult zebrafish male (MLM) and female (FLM) livers, whole body homogenates of 96 h post fertilization larvae (EM) and a pool of human liver microsomes from 50 donors (HLM). Data are expressed as the abundance from the extracted ion chromatogram of the metabolites.

13.
Hepatology ; 68(2): 634-651, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29023811

RESUMO

Hepatopulmonary syndrome (HPS) is a severe complication of cirrhosis with increased risk of mortality. Pulmonary microvascular alterations are key features of HPS; but underlying mechanisms are incompletely understood, and studies on HPS are limited to rats. Placental growth factor (PlGF), a proangiogenic molecule that is selectively involved in pathological angiogenesis, may play an important role in HPS development; however, its role has never been investigated. In this study, we validated an HPS model by common bile duct ligation (CBDL) in mice, investigated the kinetic changes in pulmonary angiogenesis and inflammation during HPS development, and provide evidence for a novel therapeutic strategy by targeting pathological angiogenesis. Mice with CBDL developed hypoxemia and intrapulmonary shunting on a background of liver fibrosis. Pulmonary alterations included increased levels of proangiogenic and inflammatory markers, which was confirmed in serum of human HPS patients. Increased PlGF production in HPS mice originated from alveolar type II cells and lung macrophages, as demonstrated by immunofluorescent staining. Dysfunctional vessel formation in CBDL mice was visualized by microscopy on vascular corrosion casts. Both prophylactic and therapeutic anti-PlGF (αPlGF) antibody treatment impeded HPS development, as demonstrated by significantly less intrapulmonary shunting and improved gas exchange. αPlGF treatment decreased endothelial cell dysfunction in vivo and in vitro and was accompanied by reduced pulmonary inflammation. Importantly, αPlGF therapy did not affect liver alterations, supporting αPlGF's ability to directly target the pulmonary compartment. CONCLUSION: CBDL in mice induces HPS, which is mediated by PlGF production; αPlGF treatment improves experimental HPS by counteracting pulmonary angiogenesis and might be an attractive therapeutic strategy for human HPS. (Hepatology 2017).


Assuntos
Síndrome Hepatopulmonar/metabolismo , Pulmão/patologia , Neovascularização Patológica/metabolismo , Fator de Crescimento Placentário/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Biomarcadores/metabolismo , Ducto Colédoco/cirurgia , Modelos Animais de Doenças , Endoglina/sangue , Síndrome Hepatopulmonar/fisiopatologia , Humanos , Ligadura/métodos , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Fator de Crescimento Placentário/antagonistas & inibidores
14.
Toxicol In Vitro ; 42: 329-336, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28506817

RESUMO

The increasing use of zebrafish embryos as an alternative model for toxicological and pharmacological studies necessitates a better understanding of xenobiotic biotransformation in this species. As cytochrome P450 enzymes (CYPs) play an essential role in this process, in vitro drug metabolism of four human CYP-specific substrates, i.e. dextromethorphan (DXM), diclofenac (DIC), testosterone (TST) and midazolam (MDZ) was investigated in adult male and female zebrafish, and in zebrafish embryos and larvae up to 120hours post-fertilization. Substrate depletion and production of their respective metabolites were measured using tandem quadrupole UPLC-MS/MS. Human liver microsomes were used as positive control. Adult zebrafish produced the two major human metabolites of DIC and DXM. For DIC the metabolite ratio was similar to that in man, whereas it was different for DXM. For TST, the major human metabolite could not be detected and MDZ was not metabolized. No sex-related differences were detected, except for the higher TST depletion rate in adult females. Zebrafish embryos and larvae showed no or only low biotransformation capacity. In conclusion, in vitro CYP-mediated drug metabolism in adult zebrafish shows differences compared to man and appears to be lacking in the early zebrafish life stages. As CYP-mediated drug metabolism in zebrafish may not be predictive for the one in man, we recommend including the zebrafish in metabolic stability testing of new compounds when considering non-clinical species for human risk assessment.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Dextrometorfano/metabolismo , Diclofenaco/metabolismo , Midazolam/metabolismo , Testosterona/metabolismo , Peixe-Zebra/metabolismo , Animais , Biotransformação , Embrião não Mamífero/metabolismo , Feminino , Humanos , Masculino , Microssomos Hepáticos/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-28405313

RESUMO

BACKGROUND: In this study the physiological implications of artificial rearing were investigated. Low (LBW) and normal birth weight (NBW) piglets were compared as they might react differently to stressors caused by artificial rearing. In total, 42 pairs of LBW and NBW piglets from 16 litters suckled the sow until d19 of age or were artificially reared starting at d3 until d19 of age. Blood and tissue samples that were collected after euthanasia at 0, 3, 5, 8 and 19 d of age. Histology, ELISA, and Ussing chamber analysis were used to study proximal and distal small intestine histo-morphology, proliferation, apoptosis, tight junction protein expression, and permeability. Furthermore, small intestine, liver and systemic redox parameters (GSH, GSSG, GSH-Px and MDA) were investigated using HPLC. RESULTS: LBW and NBW artificially reared piglets weighed respectively 40 and 33% more than LBW and NBW sow-reared piglets at d19 (P < 0.01). Transferring piglets to a nursery at d3 resulted in villus atrophy, increased intestinal FD-4 and HRP permeability and elevated GSSG/GSH ratio in the distal small intestine at d5 (P < 0.05). GSH concentrations in the proximal small intestine remained stable, while they decreased in the liver (P < 0.05). From d5 until d19, villus width and crypt depth increased, whereas PCNA, caspase-3, occludin and claudin-3 protein expressions were reduced. GSH, GSSG and permeability recovered in artificially reared piglets (P < 0.05). CONCLUSION: The results suggest that artificial rearing altered the morphology, permeability and redox state without compromising piglet performance. The observed effects were not depending on birth weight.

16.
Int J Mol Sci ; 18(1)2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-28117738

RESUMO

At present, the zebrafish embryo is increasingly used as an alternative animal model to screen for developmental toxicity after exposure to xenobiotics. Since zebrafish embryos depend on their own drug-metabolizing capacity, knowledge of their intrinsic biotransformation is pivotal in order to correctly interpret the outcome of teratogenicity assays. Therefore, the aim of this in vitro study was to assess the activity of cytochrome P450 (CYP)-a group of drug-metabolizing enzymes-in microsomes from whole zebrafish embryos (ZEM) of 5, 24, 48, 72, 96 and 120 h post-fertilization (hpf) by means of a mammalian CYP substrate, i.e., benzyloxy-methyl-resorufin (BOMR). The same CYP activity assays were performed in adult zebrafish liver microsomes (ZLM) to serve as a reference for the embryos. In addition, activity assays with the human CYP3A4-specific Luciferin isopropyl acetal (Luciferin-IPA) as well as inhibition studies with ketoconazole and CYP3cide were carried out to identify CYP activity in ZLM. In the present study, biotransformation of BOMR was detected at 72 and 96 hpf; however, metabolite formation was low compared with ZLM. Furthermore, Luciferin-IPA was not metabolized by the zebrafish. In conclusion, the capacity of intrinsic biotransformation in zebrafish embryos appears to be lacking during a major part of organogenesis.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Sondas Moleculares/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Biotransformação/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Luciferina de Vaga-Lumes/metabolismo , Humanos , Cetoconazol/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxazinas/metabolismo , Recombinação Genética/genética , Especificidade por Substrato/efeitos dos fármacos
17.
Pharm Res ; 34(4): 750-764, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28097507

RESUMO

PURPOSE: In view of pediatric drug development, juvenile animal studies are gaining importance. However, data on drug metabolizing capacities of juvenile animals are scarce, especially in non-rodent species. Therefore, we aimed to characterize the in vitro biotransformation of four human CYP450 substrates and one UGT substrate in the livers of developing Göttingen minipigs. METHODS: Liver microsomes from late fetal, Day 1, Day 3, Day 7, Day 28, and adult male and female Göttingen minipigs were incubated with a cocktail of CYP450 substrates, including phenacetin, tolbutamide, dextromethorphan, and midazolam. The latter are probe substrates for human CYP1A2, CYP2C9, CYP2D6, and CYP3A4, respectively. In addition, the UGT multienzyme substrate (from the UGT-GloTM assay), which is glucuronidated by several human UGT1A and UGT2B enzymes, was also incubated with the porcine liver microsomes. RESULTS: For all tested substrates, drug metabolism significantly rose postnatally. At one month of age, 60.5 and 75.4% of adult activities were observed for acetaminophen and dextrorphan formations, respectively, while 35.4 and 43.2% of adult activities were present for 4-OH-tolbutamide and 1'-OH-midazolam formations. Biotransformation of phenacetin was significantly higher in 28-day-old and adult females compared with males. CONCLUSIONS: Maturation of metabolizing capacities occurred postnatally, as described in man.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Microssomos Hepáticos/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Biotransformação , Dextrometorfano/metabolismo , Feminino , Feto , Glucuronosiltransferase/metabolismo , Humanos , Masculino , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Midazolam/metabolismo , Fenacetina/metabolismo , Suínos , Porco Miniatura , Tolbutamida/metabolismo
18.
Antioxidants (Basel) ; 5(4)2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27845706

RESUMO

Oxidative stress in the small intestinal epithelium can lead to barrier malfunction. In this study, the effect of rosmarinic acid (RA), quercetin (Que), gallic acid (GA), lipoic acid (LA), ethoxyquin (ETQ) and Se-methionine (SeMet) pre-treatments using 2 mM Trolox as a control on the viability and the generation of intracellular reactive oxygen species (iROS) of oxidatively (H2O2) stressed intestinal porcine epithelial cells (IPEC-J2) was investigated. A neutral red assay showed that RA (50-400 µM), Que (12.5-200 µM), GA (50-400 µM), ETQ (6.25-100 µM), and SeMet (125-1000 µM) pre-treatments but not LA significantly increased the viability of H2O2-stressed IPEC-J2 cells (p < 0.05). A 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) fluorescent probe showed that RA (100-600 µM), Que (25-800 µM), ETQ (3.125-100 µM) and SeMet (500-2000 µM) pre-treatments significantly reduced iROS in IPEC-J2 monolayers (p < 0.05). Moreover, RA and Que were most effective in reducing iROS. Therefore, the effects of RA and Que on barrier functioning in vitro were examined. RA and Que pre-treatments significantly decreased fluorescein isothiocyanate (FITC)-conjugated dextran-4 (4 kDa) permeability and transepithelial electrical resistance (TEER) of an IPEC-J2 cell monolayer (p < 0.05). These in vitro results of RA and Que hold promise for their use as antioxidants in pig feed.

19.
Reprod Toxicol ; 64: 50-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27046732

RESUMO

The zebrafish (Danio rerio) is increasingly used as a screening model for acute, chronic and developmental toxicity. More specifically, the embryo is currently investigated as a replacement of in vivo developmental toxicity studies, although its biotransformation capacity remains a point of debate. As the cytochrome P450 1 (CYP1) family plays an important role in the biotransformation of several pollutants and drugs, a quantitative in vitro protocol was refined to assess gender- and age-related CYP1A activity in the zebrafish using the ethoxyresorufin-o-deethylase (EROD) assay. Microsomal protein fractions were prepared from livers of adult males and females, ovaries and whole embryo homogenates of different developmental stages. A large biological variation but no gender-related difference in CYP1A activity was observed in adult zebrafish. Embryos showed distinct temporal but low CYP1A activity during organogenesis. These in vitro data raise questions on the bioactivation capacity of zebrafish embryos in developmental toxicity studies.


Assuntos
Envelhecimento/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/enzimologia , Organogênese/fisiologia , Caracteres Sexuais , Peixe-Zebra/metabolismo , Animais , Biotransformação/fisiologia , Feminino , Masculino , Microssomos Hepáticos/enzimologia , Testes de Toxicidade/normas , Peixe-Zebra/embriologia
20.
J Toxicol Sci ; 41(1): 1-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26763387

RESUMO

The zebrafish (Danio rerio) has been increasingly explored in pharmaceutical research as a promising alternative model for toxicological screens. This necessitates a thorough knowledge on the biotransformation processes for a correct interpretation of pharmacological and toxicological data. Physiologically, cytochrome P450 (CYP) enzymes, specifically CYP families 1-3, play a pivotal role in drug metabolism. And yet, information regarding activity of CYP, its isoforms, and conjugation enzymes in zebrafish is either scarce or conflicting. To account for this discrepancy, the available spatiotemporal, modulation and activity data on zebrafish CYP 1-3 families are reviewed in this paper and compared with human CYP data. The CYP genetic features and synteny are well characterized, as is their expression in different organ systems. Moreover, several substrates metabolized by humans also show metabolism in zebrafish, with other CYP isoforms possibly involved. Altogether, the five CYP1 members, 41 CYP2 members and five CYP3 members in zebrafish show distinct evolutionary and orthological similarities with humans.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Xenobióticos/metabolismo , Peixe-Zebra/metabolismo , Animais , Biotransformação , Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Ontologia Genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...