Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Ecancermedicalscience ; 18: 1685, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566759

RESUMO

Introduction: The incidence of squamous carcinoma of the oropharynx (OPSCC) has presented an increase worldwide, a fact that occurs along with a phenomenon of epidemiological transition, whose pathogenesis is linked to human papilloma virus (HPV) in a significant part of the cases. Published evidence at the Latin American level is scarce. The present study aims to evaluate the epidemiological and clinical characteristics of patients with oropharyngeal cancer treated in a public oncology reference centre in Chile. Methodology: A cross-sectional study was carried out. Patients with histological confirmation of OPSCC aged 18 years or older, referred to the National Cancer Institute of Chile between 2012 and 2023 were included. The association with HPV was determined by immunohistochemistry for p16. Results: 178 patients were analysed, most of them in locoregionally advanced stages involving the palatine tonsil. Seventy-seven percent were male, with a median age of 60 years. Sixty-seven percent of patients were positive for p16, with a progressive increase to 85% in the last 2 years of the study. The p16(+) patients were younger and had fewer classical risk factors. Primary treatment was radiotherapy in 94% of patients. Conclusion: The epidemiological profile of patients with OPSCC treated in a Chilean public oncology referral centre reflects the epidemiological transition observed in developed countries. This change justifies the need to adapt health policies and conduct research that considers the characteristics of this new epidemiological profile.

2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542313

RESUMO

The RE-1 silencing transcription factor (REST) is a repressor factor related to neuroendocrine prostate cancer (PCa) (NEPC), a poor prognostic stage mainly associated with castration-resistant PCa (CRPC). NEPC is associated with cell transdifferentiation and the epithelial-mesenchymal transition (EMT) in cells undergoing androgen deprivation therapy (ADT) and enzalutamide (ENZ). The effect of REST overexpression in the 22rv1 cell line (xenograft-derived prostate cancer) on EMT, migration, invasion, and the viability for ENZ was evaluated. EMT genes, Twist and Zeb1, and the androgen receptor (AR) were evaluated through an RT-qPCR and Western blot in nuclear and cytosolic fractions of REST-overexpressing 22rv1 cells (22rv1-REST). The migratory and invasive capacities of 22rv1-REST cells were evaluated via Transwell® assays with and without Matrigel, respectively, and their viability for enzalutamide via MTT assays. The 22rv1-REST cells showed decreased nuclear levels of Twist, Zeb1, and AR, and a decreased migration and invasion and a lower viability for ENZ compared to the control. Results were expressed as the mean + SD of three independent experiments (Mann-Whitney U test, Kruskal-Wallis, Tukey test). REST behaves like a tumor suppressor, decreasing the aggressiveness of 22rv1 cells, probably through the repression of EMT and the neuroendocrine phenotype. Furthermore, REST could represent a response marker to ENZ in PCa patients.


Assuntos
Benzamidas , Nitrilas , Feniltioidantoína , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios , Fatores de Transcrição , Linhagem Celular Tumoral , Receptores Androgênicos/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias de Próstata Resistentes à Castração/patologia
3.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499245

RESUMO

Prostate cancer (PCa) is a leading cause of cancer death in men, worldwide. Mortality is highly related to metastasis and hormone resistance, but the molecular underlying mechanisms are poorly understood. We have studied the presence and role of cancer stem cells (CSCs) and the Epithelial-Mesenchymal transition (EMT) in PCa, using both in vitro and in vivo models, thereby providing evidence that the stemness-mesenchymal axis seems to be a critical process related to relapse, metastasis and resistance. These are complex and related processes that involve a cooperative action of different cancer cell subpopulations, in which CSCs and mesenchymal cancer cells (MCCs) would be responsible for invading, colonizing pre-metastatic niches, initiating metastasis and an evading treatments response. Manipulating the stemness-EMT axis genes on the androgen receptor (AR) may shed some light on the effect of this axis on metastasis and castration resistance in PCa. It is suggested that the EMT gene SNAI2/Slug up regulates the stemness gene Sox2, and vice versa, inducing AR expression, promoting metastasis and castration resistance. This approach will provide new sight about the role of the stemness-mesenchymal axis in the metastasis and resistance mechanisms in PCa and their potential control, contributing to develop new therapeutic strategies for patients with metastatic and castration-resistant PCa.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias da Próstata , Masculino , Humanos , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/metabolismo , Orquiectomia , Metástase Neoplásica
4.
Int J Mol Sci ; 23(11)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35682554

RESUMO

Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, is a matricellular protein that modulates interactions between cells and their microenvironment. SPARC is expressed during extracellular matrix remodeling and is abundant in bone marrow and high-grade prostate cancer (PCa). In PCa, SPARC induces changes associated with epithelial-mesenchymal transition (EMT), enhancing migration and invasion and increasing the expression of EMT transcriptional factor Zinc finger E-box-binding homeobox 1 (ZEB1), but not Zinc finger protein SNAI1 (Snail) or Zinc finger protein SNAI2 (Slug). It is unknown whether the SPARC-induced downregulation of E-cadherin in PCa cells depends on ZEB1. Several integrins are mediators of SPARC effects in cancer cells. Because integrin signaling can induce EMT programs, we hypothesize that SPARC induces E-cadherin repression through the activation of integrins and ZEB1. Through stable knockdown and the overexpression of SPARC in PCa cells, we demonstrate that SPARC downregulates E-cadherin and increases vimentin, ZEB1, and integrin ß3 expression. Knocking down SPARC in PCa cells decreases the tyrosine-925 phosphorylation of FAK and impairs focal adhesion formation. Blocking integrin αvß3 and silencing ZEB1 revert both the SPARC-induced downregulation of E-cadherin and cell migration enhancement. We conclude that SPARC induces E-cadherin repression and enhances PCa cell migration through the integrin αvß3/ZEB1 signaling pathway.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Integrina alfaVbeta3/metabolismo , Masculino , Invasividade Neoplásica , Osteonectina/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
5.
Adv Exp Med Biol ; 1393: 51-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587301

RESUMO

Prostate cancer (PCa) incidence has increased during the last decades, becoming one of the leading causes of death by cancer in men worldwide. During an extended period of prostate cancer, malignant cells are androgen-sensitive being testosterone the main responsible for tumor growth. Accordingly, treatments blocking production and action of testosterone are mostly used. However, during disease progression, PCa cells become androgen insensitive producing a castration-resistant stage with a worse prognosis. Overcoming castration-resistant prostate cancer (CRPC) has become a great challenge in the management of this disease. In the search for molecular pathways leading to therapy resistance, the epithelial-mesenchymal transition (EMT), and particularly the transcription factors zinc finger E-box-binding homeobox 1 (Zeb1) and zinc finger protein SNAI1 (Snail), master genes of the EMT, have shown to have pivotal roles. Also, the discovery that cancer stem cells (CSCs) can be generated de novo from their non-CSCs counterpart has led to the question whereas these EMT transcription factors could be implicated in this dynamic conversion between non-CSC and CSC. In this review, we analyze evidence supporting the idea that Zeb1 and Snail induce cell malignancy and cancer stem cell phenotype in prostate cells, increasing androgen synthesis capacity and therapy resistance.


Assuntos
Neoplasias da Próstata , Fatores de Transcrição da Família Snail , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Masculino , Androgênios/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/patologia , Fenótipo , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Testosterona/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Fatores de Transcrição da Família Snail/metabolismo
6.
Int J Radiat Biol ; 97(11): 1555-1562, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34519609

RESUMO

BACKGROUND: GnRH analogs are widely used as neoadjuvant agents for radiotherapy in prostate cancer (PCa) patients, with well-documented effects in reducing tumor bulk and increasing progression-free survival. GnRH analogs act locally in the prostate by triggering apoptosis of PCa cells via activation of the GnRH receptor (GnRHR). During PCa progression, the distribution of GnRHR within the cell is altered, with reduced expression in the cell membrane and remaining sequestered in the endoplasmic reticulum. Pharmacoperone IN3 is able to relocalize GnRHR to the cell membrane. The aim of this study was to evaluate the effect of radiation on PCa cells pretreated with leuprolide, alone or in combination with IN3, as radiosensitizers. MATERIAL AND METHODS: PC3 and human PCa primary cell cultures were treated with IN3 for 24 h, followed by different doses of leuprolide for 48 h and, finally, single doses of radiation (3, 6, and 9 Gy). After radiation, cell survival, apoptosis, cell cycle distribution, and colony growth were evaluated. RESULTS: Radiation reduced cell survival and increased apoptosis in a dose-dependent manner. This effect was also directly related to leuprolide concentration. Pretreatment with IN3 enhanced apoptosis and decreased cell survival, also observing a higher proportion of cells arrested in G2. CONCLUSION: Neoadjuvant leuprolide increases radiation-mediated apoptosis of PCa cells. This effect was enhanced by pretreatment with pharmacoperone IN3. Clinical use of IN3 as a radiosensitizer combined with androgen deprivation therapy to improve survival of patients with PCa remains to be evaluated.


Assuntos
Neoplasias da Próstata , Antagonistas de Androgênios , Hormônio Liberador de Gonadotropina , Humanos , Leuprolida/farmacologia , Masculino , Próstata , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Radiossensibilizantes/farmacologia , Receptores LHRH
7.
Oncol Rep ; 46(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34165174

RESUMO

Endothelin­1 (ET­1) is involved in the regulation of steroidogenesis. Additionally, patients with castration­resistant prostate cancer (PCa) have a higher ET­1 plasma concentration than those with localized PCa and healthy individuals. The aim of the present study was to evaluate the effect of ET­1 on steroidogenesis enzymes, androgen receptor (AR) and testosterone (T) production in PCa cells. The expression levels of endothelin receptors in prostate tissue from patients with localized PCa by immunohistochemistry, and those in LNCaP and PC3 cells were determined reverse transcription­quantitative PCR (RT­qPCR) and western blotting. Furthermore, the expression levels of ET­1 were determined in LNCaP and PC3 cells by RT­qPCR and western blotting. The ET­1 receptor activation was evaluated by intracellular calcium measurement, the expression levels of AR and enzymes participating in steroidogenesis [cytochrome P450 family 11 subfamily A member 1 (CyP11A1), cytochrome P450 family 17 subfamily A member 1, aldo­keto reductase family member C2 and 3ß­hydroxysteroid dehydrogenase/isomerase 2 (3ß HSD2)] were determined by western blotting and T concentration was determined by ELISA using PC3 cells. The present results revealed higher expression levels of endothelin A receptor (ETAR) in tissues obtained from samples of patients with PCa with a low Gleason Score. No changes were identified for endothelin B receptor (ETBR). PC3 cells expressed higher levels of ET­1 and ETAR, while LNCaP cells exhibited higher expression levels of ETBR. Blocking of ETAR and endothelin B receptor decreased the expression levels of CyP11A1 and 3ß HSD2 enzymes and AR in PC3 cells, as well as T secretion. These findings suggested that ET­1 has a potential role in modulating the intratumoral steroidogenesis pathway and might have relevance as a possible therapeutic target.


Assuntos
Endotelina-1/metabolismo , Neoplasias da Próstata/metabolismo , Receptor de Endotelina A/metabolismo , Receptores Androgênicos/genética , Testosterona/metabolismo , 3-Hidroxiesteroide Desidrogenases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Receptor de Endotelina B/metabolismo , Análise Serial de Tecidos , Regulação para Cima
8.
Oncol Rep ; 45(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760173

RESUMO

Prostate cancer (PCa) is the second most diagnosed type of cancer in men worldwide. Advanced PCa is resistant to conventional therapies and high recurrence has been associated with high rates of metastasis. Cancer stem cells (CSCs) have been proposed to be responsible for this, due to their ability of self­renewal and differentiation into other cell types. Zinc finger E­box­binding homeobox 1 (ZEB1), a transcription factor involved in the regulation of epithelial­mesenchymal transition (EMT), has been associated with the activation of several mechanisms that lead to resistance to treatment. As recent evidence has shown that CSCs may originate from non­CSCs during EMT, it was hypothesized that knocking down ZEB1 expression in PCa cell lines could revert some properties associated with CSCs. Using lentiviraltransduction, ZEB1 expression was silenced in the PCa DU145 and LNCaP cell lines. The mRNA and protein expression levels of key canonical CSC markers (Krüppel­like factor 4, SOX2, CD44 and CD133) were determined using reverse transcription­-quantitative PCR and western blot analysis, respectively. In addition, the colony forming ability of the ZEB1­knockdown cells was evaluated, and the type of colonies formed (holoclones, paraclones and meroclones) was also characterized. Finally, the ability to form prostatospheres was evaluated in vitro. It was found that in ZEB1­knockdown DU145 cells, the expression levels of CSC phenotype markers (CD44, CD133 and SOX2) were decreased compared with those in the control group. Furthermore, ZEB1­knockdown cells exhibited a lower ability to form prostatospheres and to generate colonies. In conclusion, stable silencing of ZEB1 reversed CSC properties in PCa cell lines. Since ZEB1 is associated with malignancy, therapy resistance and a CSC phenotype in PCa cell lines, targeting ZEB1 may be a key factor to eradicate CSCs and improve the prognosis of patients with advanced PCa.


Assuntos
Autorrenovação Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Autorrenovação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Próstata/citologia , Próstata/patologia , Neoplasias da Próstata/patologia , Ensaio Tumoral de Célula-Tronco , Homeobox 1 de Ligação a E-box em Dedo de Zinco/antagonistas & inibidores , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
9.
Sci Rep ; 10(1): 13958, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811873

RESUMO

Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs' activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations.


Assuntos
Lactonas/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Humanos , Lactonas/metabolismo , Masculino , Camundongos , Próstata/patologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Oncol ; 56(5): 1075-1082, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32319606

RESUMO

Prostate cancer (PCa) is the leading cause of male cancer­associated mortality worldwide. Mortality is associated with metastasis and hormone resistance. Cellular, genetic and molecular mechanisms underlying metastatic progression and hormone resistance are poorly understood. Studies have investigated the local effects of gonadotropin­releasing hormone (GnRH) analogs (used for androgen deprivation treatments) and the presence of the GnRH receptor (GnRH­R) on PCa cells. Furthermore, cell subpopulations with stem­like properties, or cancer stem cells, have been isolated and characterized using a cell culture system derived from explants of human prostate tumors. In addition, the development of preclinical orthotopic models of human PCa in a nonobese diabetic/severe combined immunodeficiency mouse model of compromised immunity has enabled the establishment of a reproducible system of metastatic progression in vivo. There is increasing evidence that metastasis is a complex process involving the cooperative actions of different cancer cell subpopulations, in which cancer stem­like cells would be responsible for the final step of colonizing premetastatic niches. It has been hypothesized that PCa cells with stemness and mesenchymal signatures act cooperatively in metastatic progression and the inhibition of stemness genes, and that overexpression of androgen receptor (AR) and GnRH­R decreases the rate the metastasis and sensitizes tumors to hormone therapy. The aim of the present review is to analyze the evidence regarding this cooperative process and the possible influence of stem­like cell phenotypes, AR and GnRH­R in metastatic progression and hormone resistance. These aspects may represent an important contribution in the understanding of the mechanisms underlying metastasis and hormone resistance in PCa, and potential routes to blocking these processes, enabling the development of novel therapies that would be particularly relevant for patients with metastatic and castration­resistant PCa.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores LHRH/genética , Antagonistas de Androgênios/uso terapêutico , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Receptores LHRH/metabolismo
11.
Int J Mol Med ; 45(4): 1073-1080, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32124938

RESUMO

Zinc finger protein SNAI1 (SNAIL) and zinc finger protein SNAI2 (SLUG) transcription factors promote epithelial­mesenchymal transition, a process through which epithelial cells acquire a mesenchymal phenotype, increasing their migratory and invasive properties. In prostate cancer (PCa) progression, increased expression levels of SNAIL and SLUG have been described. In advanced PCa, a decrease in the cell surface proteoglycan syndecan­1 (SDC­1), which has a role in cell­to­extracellular matrix adhesion, has been observed. Notably, SDC­1 nuclear location has been observed in mesenchymal cancers. The present study aimed to determine if SNAIL and SLUG may be associated with the nuclear location of SDC­1 in PCa. To determine the location of SDC­1, antibodies against its intracellular domain (ID) or extracellular domain (ED) were used in benign prostatic hyperplasia (BPH) and PCa samples with high Gleason scores. Only ID­SDC­1 was located in the cell nuclei in advanced PCa samples, but not in the BPH samples. ED­SDC­1 was located in the cell membrane and cytoplasm, exhibiting decreased levels in PCa in comparison with those in BPH. Furthermore, LNCaP and PC3 PCa cell lines with ectopic SNAIL expression exhibited nuclear ID­SDC­1. No change was observed in the ED­SDC­1 levels, and maintained its location in the cell membrane and cytoplasm. SLUG induced no change in ID­SDC­1 location. At the protein level, an association between SNAIL and nuclear ID­SDC­1 was observed. In conclusion, the results of the present study demonstrated that nuclear ID­SDC­1 localization was associated with SNAIL expression in PCa cell lines.


Assuntos
Núcleo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Transcrição da Família Snail/biossíntese , Sindecana-1/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/genética , Núcleo Celular/patologia , Humanos , Masculino , Proteínas de Neoplasias/genética , Células PC-3 , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Fatores de Transcrição da Família Snail/genética , Sindecana-1/genética
12.
Asian J Androl ; 21(6): 557-564, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031331

RESUMO

Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein highly expressed in bone tissue that acts as a chemoattractant factor promoting the arrival of prostate cancer (PCa) cells to the bone marrow. However, the contribution of SPARC during the early stages of tumor progression remains unclear. In this study, we show that SPARC is highly expressed in PCa tissues with a higher Gleason score. Through stable knockdown and overexpression of SPARC in PC3 and LNCaP cells, respectively, here we demonstrate that endogenous SPARC induces the epithelial-mesenchymal transition (EMT), decreasing E-cadherin and cytokeratin 18 and increasing N-cadherin and vimentin. Moreover, SPARC induces the expression of EMT regulatory transcription factors Snail family transcriptional repressor 1 (Snail), Snail family transcriptional repressor 2 (Slug), and zinc finger E-box binding homeobox 1 (Zeb1). In addition, SPARC knockdown in PC3 cells decreases migration and invasion in vitro, without modifying cell proliferation. Our results indicate that SPARC might facilitate tumor progression by modifying the cellular phenotype in cancer cells.


Assuntos
Transição Epitelial-Mesenquimal , Osteonectina/metabolismo , Neoplasias da Próstata/patologia , Western Blotting , Linhagem Celular Tumoral , Humanos , Masculino , Gradação de Tumores , Invasividade Neoplásica , Neoplasias da Próstata/metabolismo , Análise Serial de Tecidos
13.
Asian J Androl ; 21(5): 460-467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880686

RESUMO

One of the factors promoting tumoral progress is the abnormal activation of the epithelial-mesenchymal transition (EMT) program which has been associated with chemoresistance in tumoral cells. The transcription factor zinc finger E-box-binding homeobox 1 (ZEB1), a key EMT activator, has recently been related to docetaxel resistance, the main chemotherapeutic used in advanced prostate cancer treatment. The mechanisms involved in this protective effect are still unclear. In a previous work, we demonstrated that ZEB1 expression induced an EMT-like phenotype in prostate cancer cell lines. In this work, we used prostate cancer cell lines 22Rv1 and DU145 to study the effect of ZEB1 modulation on docetaxel resistance and its possible mechanisms. The results showed that ZEB1 overexpression conferred to 22Rv1 cell resistance to docetaxel while its silencing made DU145 cells more sensitive to it. Analysis of resistance markers showed no presence of ATP-binding cassette subfamily B member 1 (MDR1) and no changes in breast cancer resistance protein (BCRP) or ATP-binding cassette subfamily C member 10 (MRP7). However, a correlation between ZEB1, multidrug resistance-associated protein 1 (MRP1), and ATP-binding cassette subfamily C member 4 (MRP4) expression was observed. MRP4 inhibition, using MK571, resensitized cells with ZEB1 overexpression to docetaxel treatment. In addition, modulation of ZEB1 and subsequent change in MRP4 expression correlated with a lower apoptotic response to docetaxel, characterized by lower B-cell lymphoma 2 (Bcl2), high BCL2-associated X protein (Bax), and high active caspase 3 expression. The response to docetaxel in our model seems to be mediated mainly by activation of the apoptotic death program. Our results showed that modulation of MRP4 could be a mediator of ZEB1-related resistance to docetaxel in prostate cancer, making it a possible marker for chemotherapy response in patients who do not express MDR1.


Assuntos
Antineoplásicos/uso terapêutico , Docetaxel/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Western Blotting , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inativação Gênica , Humanos , Masculino , Neoplasias da Próstata/metabolismo
15.
Sci Rep ; 8(1): 11467, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065348

RESUMO

Syndecan 1 (SDC-1) is a cell surface proteoglycan with a significant role in cell adhesion, maintaining epithelial integrity. SDC1 expression is inversely related to aggressiveness in prostate cancer (PCa). During epithelial to mesenchymal transition (EMT), loss of epithelial markers is mediated by transcriptional repressors such as SNAIL, SLUG, or ZEB1/2 that bind to E-box promoter sequences of specific genes. The effect of these repressors on SDC-1 expression remains unknown. Here, we demonstrated that SNAIL, SLUG and ZEB1 expressions are increased in advanced PCa, contrarily to SDC-1. SNAIL, SLUG and ZEB1 also showed an inversion to SDC-1 in prostate cell lines. ZEB1, but not SNAIL or SLUG, represses SDC-1 as demonstrated by experiments of ectopic expression in epithelial prostate cell lines. Inversely, expression of ZEB1 shRNA in PCa cell line increased SDC-1 expression. The effect of ZEB1 is transcriptional since ectopic expression of this gene represses SDC-1 promoter activity and ZEB1 binds to the SDC-1 promoter as detected by ChIP assays. An epigenetic mark associated to transcription repression H3K27me3 was bound to the same sites that ZEB1. In conclusion, this study identifies ZEB1 as a key repressor of SDC-1 during PCa progression and point to ZEB1 as a potentially diagnostic marker for PCa.


Assuntos
Neoplasias da Próstata/genética , Sindecana-1/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Adesão Celular/genética , Linhagem Celular Tumoral , Epigênese Genética/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Células PC-3 , Regiões Promotoras Genéticas/genética , Fatores de Transcrição da Família Snail/genética , Transcrição Gênica/genética
16.
Asian J Androl ; 20(3): 294-299, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29271397

RESUMO

It has been reported that one of the factors that promotes tumoral progression is the abnormal activation of the epithelial-mesenchymal transition program. This process is associated with tumoral cells acquiring invasive and malignant properties and has the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) as one of its main activators. However, the role of ZEB1 in promoting malignancy in prostate cancer (PCa) is still unclear. Here, we report that ZEB1 expression correlates with Gleason score in PCa samples and that expression of ZEB1 regulates epithelial-mesenchymal transition and malignant characteristics in PCa cell lines. The results showed that ZEB1 expression is higher in samples of higher malignancy and that overexpression of ZEB1 was able to induce epithelial-mesenchymal transition by upregulating the mesenchymal marker Vimentin and downregulating the epithelial marker E-Cadherin. On the contrary, ZEB1 silencing repressed Vimentin expression and upregulated E-Cadherin. ZEB1 expression conferred enhanced motility and invasiveness and a higher colony formation capacity to 22Rv1 cells whereas DU145 cells with ZEB1 silencing showed a decrease in those same properties. The results showed that ZEB1 could be a key promoter of tumoral progression toward advanced stages of PCa.


Assuntos
Transição Epitelial-Mesenquimal/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Gradação de Tumores , Invasividade Neoplásica/genética , Neoplasias da Próstata/patologia , Vimentina/metabolismo
17.
Oncotarget ; 7(4): 3993-4008, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26675257

RESUMO

The different prostate cancer (PCa) cell populations (bulk and cancer stem cells, CSCs) release exosomes that contain miRNAs that could modify the local or premetastatic niche. The analysis of the differential expression of miRNAs in exosomes allows evaluating the differential biological effect of both populations on the niche, and the identification of potential biomarkers and therapeutic targets. Five PCa primary cell cultures were established to originate bulk and CSCs cultures. From them, exosomes were purified by precipitation for miRNAs extraction to perform a comparative profile of miRNAs by next generation sequencing in an Illumina platform. 1839 miRNAs were identified in the exosomes. Of these 990 were known miRNAs, from which only 19 were significantly differentially expressed: 6 were overexpressed in CSCs and 13 in bulk cells exosomes. miR-100-5p and miR-21-5p were the most abundant miRNAs. Bioinformatics analysis indicated that differentially expressed miRNAs are highly related with PCa carcinogenesis, fibroblast proliferation, differentiation and migration, and angiogenesis. Besides, miRNAs from bulk cells affects osteoblast differentiation. Later, their effect was evaluated in normal prostate fibroblasts (WPMY-1) where transfection with miR-100-5p, miR-21-5p and miR-139-5p increased the expression of metalloproteinases (MMPs) -2, -9 and -13 and RANKL and fibroblast migration. The higher effect was achieved with miR21 transfection. As conclusion, miRNAs have a differential pattern between PCa bulk and CSCs exosomes that act collaboratively in PCa progression and metastasis. The most abundant miRNAs in PCa exosomes are interesting potential biomarkers and therapeutic targets.


Assuntos
Biomarcadores Tumorais/genética , Exossomos/genética , Fibroblastos/metabolismo , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/genética , Apoptose , Biomarcadores Tumorais/metabolismo , Western Blotting , Movimento Celular , Proliferação de Células , Biologia Computacional , Progressão da Doença , Fibroblastos/patologia , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Células-Tronco Neoplásicas/patologia , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/secundário , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
18.
Mol Med Rep ; 13(1): 778-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26648419

RESUMO

The incidence and mortality rates of prostate cancer (PCa) are increasing, and PCa is almost the second­leading cause of cancer­associated mortality in men. During tumor progression, epithelial cells decrease the number of adhesion molecules, change their polarity and position, rearrange their cytoskeleton and increase their migratory and invasive capacities. These changes are known under the concept of epithelial­mesenchymal transition (EMT). EMT is characterized by an upregulation of certain transcription factors, including SNAIL1, which represses genes that are characteristic of an epithelial phenotype, including E­cadherin, and indirectly increase the expression levels of genes, which are associated with the mesenchymal phenotype. It has been suggested that the transcription factor, SNAIL1, decreases the proliferation and increases the migratory and invasive capacities of PCa cell lines. The present study was performed using LNCaP and PC3 cell lines, in which the expression levels of SNAIL1 were increased or silenced through the use of lentiviral vectors. The expression levels of EMT markers were quantified using reverse transcription­quantitative polymerase chain reaction and western blot analysis. In addition, cell survival was analyzed using an MTS assay; cell proliferation was examined using an antibody targeting Ki­67; migration on plates with 8 µm pores to allow the passage of cells; and invasiveness was analyzed using a membrane chamber covered in dried basement membrane matrix solution. The levels of apoptosis were determined using a Caspase 3/7 assay containing a substrate modified by caspases 3 and 7. The results demonstrated that the overexpression and silencing of SNAIL1 decreased cell proliferation and survival. However, the overexpression of SNAIL1 decreased apoptosis, compared with cells with the SNAIL1­silenced cells, in which cell apoptosis increased. The migration and invasive capacities increased in the cells overexpressing SNAIL1, and decreased when SNAIL1 was silenced. In conclusion, PCa cells overexpressing SNAIL1 exhibited characteristics of an EMT phenotype, whereas the silencing of the SNAIL1 transcriptional repressor promoted an epithelial­like phenotype, with decreased migration and invasion, characteristic of mesenchymal cells.


Assuntos
Movimento Celular , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Fatores de Transcrição/metabolismo , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transição Epitelial-Mesenquimal , Vetores Genéticos/metabolismo , Humanos , Lentivirus/metabolismo , Masculino , Invasividade Neoplásica , Fatores de Transcrição da Família Snail
19.
Oncol Lett ; 10(4): 2142-2148, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26622809

RESUMO

Prostate cancer is one of the most prevalent oncological diseases in males worldwide, and the mortalities resulting from this type of cancer are mainly due to metastasis. The most common models for the study of metastasis are transgenic and immunocompromised mice, which enable the study of the metastatic process in a controlled way by the injection of prostate cancer cells into the mice. In the present study, NOD-SCIDγ mice were injected orthotopically with PC3 cells in the anterior prostate in order to establish a metastatic model. The results demonstrated the development and growth of a primary tumor that preceded the formation of micrometastases in the lung, liver and pancreas, followed by macrometastases in the liver. This model adequately represents the dynamics of the metastatic process, and may be useful for novel therapeutic assays and post-surgical relapse studies.

20.
Oncol Rep ; 34(6): 2837-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26503286

RESUMO

Metastatic prostate cancer (mPCa) is one of the most prevalent cancers in men worldwide. The main cause of death in these patients is androgen-resistant metastatic disease. Surgery of the primary tumor has been avoided in these patients as there is no strong evidence that supports a beneficial effect. From the biological point of view, it appears rational to hypothesize that the primary tumor may contribute to the establishment and growth of metastases. Considering this, we propose that cytoreductive surgery (CS) in advanced metastatic stage slows the progression of metastatic disease. To test this, we used a mouse model of resectable orthotopic prostate cancer (PCa) and performed CS. After surgery, metastases were smaller and less numerous in the treated mice; an effect that was observable until the end of the experiment. These results suggest that CS alone delays the progression of metastatic disease and that although this effect may be temporary, it may translate to prolonged survival, especially when used with adjuvant therapy.


Assuntos
Procedimentos Cirúrgicos de Citorredução , Progressão da Doença , Prostatectomia , Neoplasias da Próstata/cirurgia , Animais , Quimioterapia Adjuvante , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Metástase Neoplásica , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...