Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(6): 1327-1334, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490174

RESUMO

To build a just, equitable, and diverse academy, scientists and institutions must address systemic barriers that sex and gender minorities face. This Commentary summarizes (1) critical context informing the contemporary oppression of transgender people, (2) how this shapes extant research on sex and gender, and (3) actions to build an inclusive and rigorous academy for all.


Assuntos
Minorias Sexuais e de Gênero , Pessoas Transgênero , Masculino , Feminino , Humanos , Identidade de Gênero
2.
ACS Omega ; 9(2): 3017-3027, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38250344

RESUMO

This study examines the role of water in binding equilibria with a special focus on secondary solutes (cosolutes) that influence the equilibrium but are not constituents of the final product. Using a thermodynamic framework that includes an explicit term for the release of water molecules upon binding, this investigation reveals how solutes may alter equilibria by changing the activity of the reactants, reflected in ΔG°(obs), and by changing the chemical potential of the solvent, reflected in ΔGS. The framework is applied to four experimental binding systems that differ in the degree of electrostatic contributions. The model systems include the chelation of Ca2+ by EDTA and three host-guest reactions; the pairings of p-sulfonatocalix[4]arene with tetramethylammonium ion, cucurbit[7]uril with N-acetyl-phenylalanine-amide, and ß-cyclodextrin with adamantane carboxylate are tested. Each reaction pair is examined by isothermal titration calorimetry at 25 °C in the presence of a common osmolyte, sucrose, and a common chaotrope, urea. Molar solutions of trehalose and phosphate were also tested with selected models. In general, cosolutes that enhance binding tend to reduce the solvation free energy penalty and cosolutes that weaken binding tend to increase the solvation free energy penalty. Notably, the nonpolar-nonpolar interaction between adamantane carboxylate and ß-cyclodextrin is characterized by a ΔGS value near zero. The results with ß-cyclodextrin, in particular, prompt further discussions of the hydrophobic effect and the biocompatible properties of trehalose. Other investigators are encouraged to test and refine the approach taken here to further our understanding of solvent effects on molecular recognition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...