Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(6)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808676

RESUMO

Melanin granules cluster within supra-nuclear caps in basal keratinocytes (KCs) of the human epidermis, where they protect KC genomic DNA against ultraviolet radiation (UVR) damage. While much is known about melanogenesis in melanocytes (MCs) and a moderate amount about melanin transfer from MC to KC, we know little about the fate of melanin once inside KCs. We recently reported that melanin fate in progenitor KCs is regulated by rare asymmetric organelle movement during mitosis. Here, we explore the role of actin, microtubules, and centrosome-associated machinery in distributing melanin within KCs. Short-term cultures of human skin explants were treated with cytochalasin-B and nocodazole to target actin filaments and microtubules, respectively. Treatment effects on melanin distribution were assessed by the Warthin-Starry stain, on centrosome-associated proteins by immunofluorescence microscopy, and on co-localisation with melanin granules by brightfield microscopy. Cytochalasin-B treatment disassembled supra-nuclear melanin caps, while nocodazole treatment moved melanin from the apical to basal KC domain. Centrosome and centriolar satellite-associated proteins showed a high degree of co-localisation with melanin. Thus, once melanin granules are transferred to KCs, their preferred apical distribution appears to be facilitated by coordinated movement of centrosomes and centriolar satellites. This mechanism may control melanin's strategic position within UVR-exposed KCs.


Assuntos
Melaninas/metabolismo , Pele/metabolismo , Actinas/metabolismo , Biomarcadores , Polaridade Celular , Células Cultivadas , Centrossomo/metabolismo , Grânulos Citoplasmáticos/metabolismo , Citoesqueleto/metabolismo , Imunofluorescência , Humanos , Hibridização In Situ , Queratinócitos/metabolismo , Melanócitos/metabolismo , Fenótipo
2.
Methods Mol Biol ; 2154: 1-12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32314203

RESUMO

The migration of epidermal keratinocytes is the basis for skin reepithelialization during wound healing. The in vitro scratch-wound assay using monolayers of primary human epidermal keratinocytes is a straightforward and effective method to assess their migratory capacity. The mechanical scratch of a confluent monolayer directly disrupts the adhesion of the keratinocytes to one another and to the underlying matrix, resembling the physical trauma of a wound in an in vitro assay. The keratinocytes will undergo an epithelial-to-mesenchymal transition, which will confer an ability to migrate toward each other to cover the gap by restructuring cell-cell and cell-extracellular matrix connections. However, a good scratch-wound method and protocol to ensure scratch reproducibility is essential, particularly when using primary cell cultures where donor variability may also impact on results.


Assuntos
Separação Celular , Células Epidérmicas/metabolismo , Queratinócitos/metabolismo , Pele/citologia , Técnicas de Cultura de Células , Movimento Celular , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Células Epidérmicas/citologia , Transição Epitelial-Mesenquimal , Humanos , Queratinócitos/citologia
3.
Lasers Surg Med ; 51(4): 370-382, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30168605

RESUMO

BACKGROUND AND OBJECTIVE: Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light-based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV-blue light can activate Opsin 1-SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. MATERIALS AND METHODS: Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro-dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT-PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch-wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. RESULTS: Opsin receptors (OPN1-SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. CONCLUSIONS: Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light-based therapies for cutaneous wound healing. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.


Assuntos
Luz , Terapia com Luz de Baixa Intensidade/métodos , Opsinas/metabolismo , Pele/efeitos da radiação , Lesões dos Tecidos Moles/terapia , Cicatrização/efeitos da radiação , Biomarcadores/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Pele/lesões , Pele/metabolismo , Lesões dos Tecidos Moles/metabolismo
4.
Pharmacology ; 102(5-6): 324-331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30296786

RESUMO

BACKGROUND/AIMS: CID16020046 blocks the effect of the lipid lysophosphatidylinositol (LPI) at its receptor, GPR55. CID16020046 and another antagonist, ML193, have been used to investigate GPR55-mediated effects of LPI on cells, tissues, and in vivo. Here we describe the structure-activity relationship of CID16020046. METHODS: Yeast or human cells were engineered to express GPR55 or control receptors. Cells were pretreated with a test agent before agonist challenge. Functional responses were quantified by yeast gene-reporter or calcium imaging. RESULTS: Three substituents around the central pyrazololactam core of CID16020046 are each tolerant to substitution without abolishing GPR55 activity. Analogues of CID16020046 with potency at GPR55 ranging >1,000-fold are described, including several lacking activity up to the top concentration tested. One analogue, compound 1 (GSK875734A), has approximately 50-fold greater potency than CID16020046 in an inverse agonist assay. CID16020046, ML193 and 2 further antagonists (ML191 and ML192) all block the effect of a surrogate agonist at human GPR55. ML193, CID16020046 and several other examples of the pyrazololactam chemotype were also shown to antagonise rat GPR55. CONCLUSION: These data confirm the utility of CID16020046 and ML193 as tools to investigate the physiological role of GPR55, and offer starting points for GPR55 antagonists with optimised pharmacokinetic or other properties.


Assuntos
Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Benzoatos/química , Benzoatos/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Humanos , Lisofosfolipídeos/farmacologia , Ratos , Receptores de Canabinoides , Proteínas Recombinantes de Fusão/farmacologia , Relação Estrutura-Atividade , Leveduras/metabolismo
5.
Lasers Surg Med ; 50(8): 859-882, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29665018

RESUMO

BACKGROUND OBJECTIVES: The past decade has witnessed a rapid expansion of photobiomodulation (PBM), demonstrating encouraging results for the treatment of cutaneous disorders. Confidence in this approach, however, is impaired not only by a lack of understanding of the light-triggered molecular cascades but also by the significant inconsistency in published experimental outcomes, design of the studies and applied optical parameters. This study aimed at characterizing the response of human dermal fibroblast subpopulations to visible and near-infrared (NIR) light in an attempt to identify the optical treatment parameters with high potential to address deficits in aging skin and non-healing chronic wounds. MATERIALS AND METHODS: Primary human reticular and papillary dermal fibroblasts (DF) were isolated from the surplus of post-surgery human facial skin. An in-house developed LED-based device was used to irradiate cell cultures using six discrete wavelengths (450, 490, 550, 590, 650, and 850 nm). Light dose-response at a standard oxygen concentration (20%) at all six wavelengths was evaluated in terms of cell metabolic activity. This was followed by an analysis of the transcriptome and procollagen I production at a protein level, where cells were cultured in conditions closer to in vivo at 2% environmental oxygen and 2% serum. Furthermore, the production of reactive oxygen species (ROS) was accessed using real-time fluorescence confocal microscopy imaging. Here, production of ROS in the presence or absence of antioxidants, as well as the cellular localization of ROS, was evaluated. RESULTS: In terms of metabolic activity, consecutive irradiation with short-wavelength light (⇐530 nm) exerted an inhibitory effect on DF, while longer wavelengths (>=590 nm) had essentially a neutral effect. Cell behavior following treatment with 450 nm was biphasic with two distinct states: inhibitory at low- to mid- dose levels (<=30 J/cm2 ), and cytotoxic at higher dose levels (>30 J/cm2 ). Cell response to blue light was accompanied by a dose-dependent release of ROS that was localized in the perinuclear area close to mitochondria, which was attenuated by an antioxidant. Overall, reticular DFs exhibited a greater sensitivity to light treatment at the level of gene expression than did papillary DFs, with more genes significantly up- or down- regulated. At the intra-cellular signaling pathway level, the up- or down- regulation of vital pathways was observed only for reticular DF, after treatment with 30 J/cm2 of blue light. At the cellular level, short visible wavelengths exerted a greater inhibitory effect on reticular DF. Several genes involved in the TGF-ß signaling pathway were also affected. In addition, procollagen I production was inhibited. By contrast, 850 nm near-infrared (NIR) light (20 J/cm2 ) exerted a stimulatory metabolic effect in these cells, with no detectable intracellular ROS formation. Here too, reticular DF were more responsive than papillary DF. This stimulatory effect was only observed under in vivo-like low oxygen conditions, corresponding to normal dermal tissue oxygen levels (approximately 2%). CONCLUSION: This study highlights a differential impact of light on human skin cells with upregulation of metabolic activity with NIR light, and inhibition of pro-collagen production and proliferation in response to blue light. These findings open-up new avenues for developing therapies for different cutaneous conditions (e.g., treatment of keloids and fibrosis) or differential therapy at distinct stages of wound healing. Lasers Surg. Med. 50:859-882, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Fibroblastos/efeitos da radiação , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade , Dermatopatias/radioterapia , Técnicas de Cultura de Células , Proliferação de Células/efeitos da radiação , Fibroblastos/fisiologia , Humanos , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...