Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mol Psychiatry ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486048

RESUMO

Early-life stress has been linked to multiple neurodevelopmental and neuropsychiatric deficits. Our previous studies have linked maternal presence/absence from the nest in developing rat pups to changes in prefrontal cortex (PFC) activity. Furthermore, we have shown that these changes are modulated by serotonergic signaling. Here we test whether changes in PFC activity during early life affect the developing cortex leading to behavioral alterations in the adult. We show that inhibiting the PFC of mouse pups leads to cognitive deficits in the adult comparable to those seen following maternal separation. Moreover, we show that activating the PFC during maternal separation can prevent these behavioral deficits. To test how maternal separation affects the transcriptional profile of the PFC we performed single-nucleus RNA-sequencing. Maternal separation led to differential gene expression almost exclusively in inhibitory neurons. Among others, we found changes in GABAergic and serotonergic pathways in these interneurons. Interestingly, both maternal separation and early-life PFC inhibition led to changes in physiological responses in prefrontal activity to GABAergic and serotonergic antagonists that were similar to the responses of more immature brains. Prefrontal activation during maternal separation prevented these changes. These data point to a crucial role of PFC activity during early life in behavioral expression in adulthood.

2.
Front Immunol ; 14: 1250229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37822944

RESUMO

High viral tolerance coupled with an extraordinary regulation of the immune response makes bats a great model to study host-pathogen evolution. Although many immune-related gene gains and losses have been previously reported in bats, important gene families such as antimicrobial peptides (AMPs) remain understudied. We built an exhaustive bioinformatic pipeline targeting the major gene families of defensins and cathelicidins to explore AMP diversity and analyze their evolution and distribution across six bat families. A combination of manual and automated procedures identified 29 AMP families across queried species, with α-, ß-defensins, and cathelicidins representing around 10% of AMP diversity. Gene duplications were inferred in both α-defensins, which were absent in five species, and three ß-defensin gene subfamilies, but cathelicidins did not show significant shifts in gene family size and were absent in Anoura caudifer and the pteropodids. Based on lineage-specific gains and losses, we propose diet and diet-related microbiome evolution may determine the evolution of α- and ß-defensins gene families and subfamilies. These results highlight the importance of building species-specific libraries for genome annotation in non-model organisms and shed light on possible drivers responsible for the rapid evolution of AMPs. By focusing on these understudied defenses, we provide a robust framework for explaining bat responses to pathogens.


Assuntos
Quirópteros , beta-Defensinas , Animais , Quirópteros/genética , beta-Defensinas/genética , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos , Catelicidinas
3.
Schizophr Res ; 261: 100-106, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37716202

RESUMO

BACKGROUND: The striatal-pallidal pathway plays an important role in cognitive control and modulation of behaviors. Globus pallidus interna (GPi), as a primary output structure, is crucial in modulating excitation and inhibition. Studies of GPi in psychiatric illnesses are lacking given the technical challenges of examining this small and functionally diverse subcortical structure. METHODS: 71 medication-naïve first episode schizophrenia (FES) participants and 73 healthy controls (HC) were recruited at the Shanghai Mental Health Center. Clinical symptoms and imaging data were collected at baseline and, in a subset of patients, 8 weeks after initiating treatment. Resting-state functional connectivity of sub-regions of the GP were assessed using a novel mask that combines two atlases to create 8 ROIs in the GP. RESULTS: Baseline imaging data from 63 FES patients and 55 HC met quality standards and were analyzed. FES patients exhibited less negative connectivity and increased positive connectivity between the right anterior GPi and several cortical and subcortical areas at baseline compared to HC (PFWE < 0.05). Positive functional connectivity between the right anterior GPi and several brain areas, including the right dorsal anterior cingulate gyrus, was associated with severity of positive symptoms (PFWE < 0.05) and predicted treatment response after 8 weeks (n = 28, adjusted R2 = 0.486, p < 0.001). CONCLUSIONS: Our results implicate striatal-pallidal-thalamic pathways in antipsychotic efficacy. If replicated, these findings may reflect failure of neurodevelopmental processes in adolescence and early adulthood that decrease functional connectivity as an index of failure of the limbic/associative GPi to appropriately inhibit irrelevant signals in psychosis.


Assuntos
Esquizofrenia , Adolescente , Humanos , Adulto , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Globo Pálido/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , China
4.
Zookeys ; 1175: 187-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636530

RESUMO

Neacomys is a genus of small spiny or bristly sigmodontine rodents that are common components of mammalian faunas in multiple biomes on Central and South America. Recent studies on this group have demonstrated that there is cryptic diversity yet to be discovered within currently recognized species that have not received comprehensive revisions, as well as in areas that have been overlooked. Here we ratify this assertion by describing a new species previously misidentified as the Narrow-footed Spiny Mouse (Neacomystenuipes) from the Chocó biogeographic region in northwestern Ecuador, Neacomysmarci Brito & Tinoco, sp. nov. Distinctiveness of this entity is supported by the combination of the following morphological characters: small size (head-body length 65-85 mm); long tail (69-126% longer than head-body length); pale buff-colored but gray-based belly fur; white throat; hypothenar pad usually absent; long nasals; and a condylar process higher than the coronoid process. Likewise genetic distance analyses and phylogenetic reconstructions based on cytochrome-b (Cytb) sequence data indicate a clear divergence from typical populations of N.tenuipes, and a sister relationship between them. The results presented here increase the diversity of Neacomys to 24 species, placing it among the most diverse genera within the sigmodontine rodents.

5.
Hum Brain Mapp ; 43(1): 37-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-32420680

RESUMO

Neuroimaging has been extensively used to study brain structure and function in individuals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) over the past decades. Two of the main shortcomings of the neuroimaging literature of these disorders are the small sample sizes employed and the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and ENIGMA-ASD working groups were respectively, founded with a common goal to address these limitations. Here, we provide a narrative review of the thus far completed and still ongoing projects of these working groups. Due to an implicitly hierarchical psychiatric diagnostic classification system, the fields of ADHD and ASD have developed largely in isolation, despite the considerable overlap in the occurrence of the disorders. The collaboration between the ENIGMA-ADHD and -ASD working groups seeks to bring the neuroimaging efforts of the two disorders closer together. The outcomes of case-control studies of subcortical and cortical structures showed that subcortical volumes are similarly affected in ASD and ADHD, albeit with small effect sizes. Cortical analyses identified unique differences in each disorder, but also considerable overlap between the two, specifically in cortical thickness. Ongoing work is examining alternative research questions, such as brain laterality, prediction of case-control status, and anatomical heterogeneity. In brief, great strides have been made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and follow-up analyses continue that include more imaging modalities (diffusion MRI and resting-state functional MRI), collaborations with other large databases, and samples with dual diagnoses.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Encéfalo , Neuroimagem , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Estudos Multicêntricos como Assunto , Neurociências
6.
Hum Brain Mapp ; 43(1): 452-469, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570244

RESUMO

Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Corpo Estriado/anatomia & histologia , Hipocampo/anatomia & histologia , Desenvolvimento Humano/fisiologia , Neuroimagem , Tálamo/anatomia & histologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Tonsila do Cerebelo/diagnóstico por imagem , Criança , Pré-Escolar , Corpo Estriado/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Tálamo/diagnóstico por imagem , Adulto Jovem
7.
Hum Brain Mapp ; 43(1): 470-499, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044802

RESUMO

For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.


Assuntos
Variação Biológica da População/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Desenvolvimento Humano/fisiologia , Imageamento por Ressonância Magnética , Neuroimagem , Caracteres Sexuais , Espessura Cortical do Cérebro , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Masculino
8.
J Autism Dev Disord ; 52(6): 2379-2387, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34160725

RESUMO

This study investigated motor preparation and action-consequence prediction using the lateralized readiness potential (LRP). Motor impairments are common in autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which commonly co-occur. Alterations in predictive processes may impact motor planning. Whether motor planning deficits are characteristic of ASD broadly or magnified in the context of co-morbid ADHD is unclear. ASD children with (ASD + ADHD; n = 12) and without (ASD - ADHD; n = 9) comorbid ADHD and typical controls (n = 29) performed voluntary motor actions that either did or did not result in auditory consequences. ASD - ADHD children demonstrated LRP enhancement when their action produced an effect while ASD + ADHD children had attenuated responses regardless of action-effect pairings. Findings suggest influence of ADHD comorbidity on motor preparation and prediction in ASD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Transtorno do Deficit de Atenção com Hiperatividade/complicações , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/epidemiologia , Criança , Comorbidade , Humanos
9.
Hum Brain Mapp ; 43(1): 431-451, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33595143

RESUMO

Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Desenvolvimento Humano/fisiologia , Neuroimagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
Front Psychiatry ; 12: 759696, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867544

RESUMO

Neuroimaging research seeks to identify biomarkers to improve the diagnosis, prognosis, and treatment of attention-deficit/hyperactivity disorder (ADHD), although clinical translation of findings remains distant. Resting-state functional magnetic resonance imaging (R-fMRI) is increasingly being used to characterize functional connectivity in the brain. Despite mixed results to date and multiple methodological challenges, dominant hypotheses implicate hyperconnectivity across brain networks in patients with ADHD, which could be the target of pharmacological treatments. We describe the experience and results of the Clínica Universidad de Navarra (Spain) Metilfenidato (CUNMET) pilot study. CUNMET tested the feasibility of identifying R-fMRI markers of clinical response in children with ADHD undergoing naturalistical pharmacological treatments. We analyzed cross-sectional data from 56 patients with ADHD (18 treated with methylphenidate, 18 treated with lisdexamfetamine, and 20 treatment-naive patients). Standard preprocessing and statistical analyses with attention to control for head motion and correction for multiple comparisons were performed. The only results that survived correction were noted in contrasts of children who responded clinically to lisdexamfetamine after long-term treatment vs. treatment-naive patients. In these children, we observed stronger negative correlations (anticorrelations) across nodes in six brain networks, which is consistent with higher across-network functional segregation in patients treated with lisdexamfetamine, i.e., less inter-network interference than in treatment-naive patients. We also note the lessons learned, which could help those pursuing clinically relevant multidisciplinary research in ADHD en route to eventual personalized medicine. To advance reproducible open science, our report is accompanied with links providing access to our data and analytic scripts.

11.
J Child Psychol Psychiatry ; 62(10): 1202-1219, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33748971

RESUMO

OBJECTIVE: Some studies have suggested alterations of structural brain asymmetry in attention-deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left-right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. METHODS: We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. RESULTS: There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen's d from -0.18 to 0.18) and would not survive study-wide correction for multiple testing. CONCLUSION: Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Núcleo Caudado , Criança , Humanos , Imageamento por Ressonância Magnética
12.
J Neurosci ; 41(12): 2723-2732, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33536200

RESUMO

Early life is a sensitive period, in which enhanced neural plasticity allows the developing brain to adapt to its environment. This plasticity can also be a risk factor in which maladaptive development can lead to long-lasting behavioral deficits. Here, we test how early-life exposure to the selective-serotonin-reuptake-inhibitor (SSRI), fluoxetine, affects motivation, and dopaminergic signaling in adulthood. We show for the first time that mice exposed to fluoxetine in the early postnatal period exhibit a reduction in effort-related motivation. These mice also show blunted responses to amphetamine and reduced dopaminergic activation in a sucrose reward task. Interestingly, we find that the reduction in motivation can be rescued in the adult by administering bupropion, a dopamine-norepinephrine reuptake inhibitor used as an antidepressant and a smoke cessation aid but not by fluoxetine. Taken together, our studies highlight the effects of early postnatal exposure of fluoxetine on motivation and demonstrate the involvement of the dopaminergic system in this process.SIGNIFICANCE STATEMENT The developmental period is characterized by enhanced plasticity. During this period, environmental factors have the potential to lead to enduring behavioral changes. Here, we show that exposure to the SSRI fluoxetine during a restricted period in early life leads to a reduction in adult motivation. We further show that this reduction is associated with decreased dopaminergic responsivity. Finally, we show that motivational deficits induced by early-life fluoxetine exposure can be rescued by adult administration of bupropion but not by fluoxetine.


Assuntos
Dopamina/metabolismo , Fluoxetina/farmacologia , Locomoção/efeitos dos fármacos , Motivação/efeitos dos fármacos , Fenótipo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Animais Recém-Nascidos , Feminino , Locomoção/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Microdiálise/métodos , Motivação/fisiologia
13.
Neuroimage ; 225: 117489, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130272

RESUMO

Multilayer network models have been proposed as an effective means of capturing the dynamic configuration of distributed neural circuits and quantitatively describing how communities vary over time. Beyond general insights into brain function, a growing number of studies have begun to employ these methods for the study of individual differences. However, test-retest reliabilities for multilayer network measures have yet to be fully quantified or optimized, potentially limiting their utility for individual difference studies. Here, we systematically evaluated the impact of multilayer community detection algorithms, selection of network parameters, scan duration, and task condition on test-retest reliabilities of multilayer network measures (i.e., flexibility, integration, and recruitment). A key finding was that the default method used for community detection by the popular generalized Louvain algorithm can generate erroneous results. Although available, an updated algorithm addressing this issue is yet to be broadly adopted in the neuroimaging literature. Beyond the algorithm, the present work identified parameter selection as a key determinant of test-retest reliability; however, optimization of these parameters and expected reliabilities appeared to be dataset-specific. Once parameters were optimized, consistent with findings from the static functional connectivity literature, scan duration was a much stronger determinant of reliability than scan condition. When the parameters were optimized and scan duration was sufficient, both passive (i.e., resting state, Inscapes, and movie) and active (i.e., flanker) tasks were reliable, although reliability in the movie watching condition was significantly higher than in the other three tasks. The minimal data requirement for achieving reliable measures for the movie watching condition was 20 min, and 30 min for the other three tasks. Our results caution the field against the use of default parameters without optimization based on the specific datasets to be employed - a process likely to be limited for most due to the lack of test-retest samples to enable parameter optimization.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem Funcional/métodos , Vias Neurais/diagnóstico por imagem , Adulto , Algoritmos , Encéfalo/fisiologia , Conectoma , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
14.
Mol Psychiatry ; 26(9): 4795-4812, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32398719

RESUMO

Serotonin and dopamine are associated with multiple psychiatric disorders. How they interact during development to affect subsequent behavior remains unknown. Knockout of the serotonin transporter or postnatal blockade with selective serotonin reuptake inhibitors (SSRIs) leads to novelty-induced exploration deficits in adulthood, potentially involving the dopamine system. Here, we show in the mouse that raphe nucleus serotonin neurons activate ventral tegmental area dopamine neurons via glutamate co-transmission and that this co-transmission is reduced in animals exposed postnatally to SSRIs. Blocking serotonin neuron glutamate co-transmission mimics this SSRI-induced hypolocomotion, while optogenetic activation of dopamine neurons reverses this hypolocomotor phenotype. Our data demonstrate that serotonin neurons modulate dopamine neuron activity via glutamate co-transmission and that this pathway is developmentally malleable, with high serotonin levels during early life reducing co-transmission, revealing the basis for the reduced novelty-induced exploration in adulthood due to postnatal SSRI exposure.


Assuntos
Ácido Glutâmico , Área Tegmentar Ventral , Animais , Neurônios Dopaminérgicos , Feminino , Camundongos , Camundongos Knockout , Gravidez , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
15.
J Am Acad Child Adolesc Psychiatry ; 60(2): 222-235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33137412

RESUMO

OBJECTIVE: Resting-state functional magnetic resonance imaging (R-fMRI) studies of the neural correlates of medication treatment in attention-deficit/hyperactivity disorder (ADHD) have not been systematically reviewed. Our objective was to systematically identify, assess and summarize within-subject R-fMRI studies of pharmacological-induced changes in patients with ADHD. We critically appraised strengths and limitations, and provide recommendations for future research. METHOD: Systematic review of published original reports in English meeting criteria in pediatric and adult patients with ADHD up to July 1, 2020. A thorough search preceded selection of studies matching prespecified criteria. Strengths and limitations of selected studies, regarding design and reporting, were identified based on current best practices. RESULTS: We identified and reviewed 9 studies (5 pediatric and 4 adult studies). Sample sizes were small-medium (16-38 patients), and included few female participants. Medications were methylphenidate, amphetamines, and atomoxetine. Wide heterogeneity was observed in designs, analyses and results, which could not be combined quantitatively. Qualitatively, the multiplicity of brain regions and networks identified, some of which correlated with clinical improvements, do not support a coherent mechanistic hypothesis of medication effects. Overall, reports did not meet current standards to ensure reproducibility. CONCLUSION: In this emerging field, the few studies using R-fMRI to analyze the neural correlates of medications in patients with ADHD suggest a potential modulatory effect of stimulants and atomoxetine on several intrinsic brain activity metrics. However, methodological heterogeneity and reporting issues need to be addressed in future research to validate findings which may contribute to clinical care. Such a goal is not yet at hand.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Adulto , Cloridrato de Atomoxetina/farmacologia , Cloridrato de Atomoxetina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Estimulantes do Sistema Nervoso Central/efeitos adversos , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Metilfenidato/uso terapêutico , Reprodutibilidade dos Testes
16.
Curr Opin Psychiatry ; 34(2): 105-111, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278156

RESUMO

PURPOSE OF REVIEW: Neuroimaging research on attention-deficit/hyperactivity disorder (ADHD) continues growing in extent and complexity, although it has yet to become clinically meaningful. We review recent MRI research on ADHD, to identify robust findings, current trends and challenges. RECENT FINDINGS: We identified 40 publications between January 2019 and September 2020 reporting or reviewing MRI research on ADHD. Four meta-analyses have presented conflicting results regarding across-study convergence of functional and resting-state functional (fMRI and R-fMRI) studies on ADHD. On the other hand, the Enhancing NeuroImaging Genetics Through Meta-Analysis international consortium has identified statistically robust albeit small differences in structural brain cortical and subcortical indices in children with ADHD versus typically developing controls. Other international consortia are harnessing open-science efforts and multimodal data (imaging, genetics, phenotypic) to shed light on the complex interplay of genetics, environment, and development in the pathophysiology of ADHD. We note growing research in 'prediction' science, which applies machine-learning analysis to identify biomarkers of disease based on big data. SUMMARY: Neuroimaging in ADHD is still far from informing clinical practice. Current large-scale, multimodal, and open-science initiatives represent promising paths toward untangling the neurobiology of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem , Humanos , Metanálise como Assunto
17.
Am J Psychiatry ; 177(9): 834-843, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32539527

RESUMO

OBJECTIVE: Attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. The authors sought to directly compare these disorders using structural brain imaging data from ENIGMA consortium data. METHODS: Structural T1-weighted whole-brain MRI data from healthy control subjects (N=5,827) and from patients with ADHD (N=2,271), ASD (N=1,777), and OCD (N=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. The authors examined subcortical volume, cortical thickness, and cortical surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults, using linear mixed-effects models adjusting for age, sex, and site (and intracranial volume for subcortical and surface area measures). RESULTS: No shared differences were found among all three disorders, and shared differences between any two disorders did not survive correction for multiple comparisons. Children with ADHD compared with those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller intracranial volume than control subjects and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared with adult control subjects and other clinical groups. No OCD-specific differences were observed across different age groups and surface area differences among all disorders in childhood and adulthood. CONCLUSIONS: The study findings suggest robust but subtle differences across different age groups among ADHD, ASD, and OCD. ADHD-specific intracranial volume and hippocampal differences in children and adolescents, and ASD-specific cortical thickness differences in the frontal cortex in adults, support previous work emphasizing structural brain differences in these disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Cérebro , Neuroimagem/métodos , Transtorno Obsessivo-Compulsivo , Adolescente , Adulto , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Cérebro/diagnóstico por imagem , Cérebro/patologia , Cérebro/fisiopatologia , Criança , Feminino , Desenvolvimento Humano/fisiologia , Humanos , Masculino , Transtorno Obsessivo-Compulsivo/diagnóstico , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/psicologia , Tamanho do Órgão , Psicopatologia , Relatório de Pesquisa , Análise de Sistemas
18.
J Atten Disord ; 24(7): 1045-1056, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30047295

RESUMO

Objective: Elevated response time intrasubject variability (RT-ISV) characterizes ADHD. Deficient emotional self-regulation (DESR), defined by summating Child Behavior Checklist Anxious/Depressed, Aggressive, and Attention subscale scores, has been associated with worse outcome in ADHD. To determine if DESR is differentially associated with elevated RT-ISV, we examined RT-ISV in children with ADHD with and without DESR and in typically developing children (TDC). Method: We contrasted RT-ISV during a 6-min Eriksen Flanker Task in 31 children with ADHD without DESR, 34 with ADHD with DESR, and 65 TDC. Results: Regardless of DESR, children with ADHD showed significantly greater RT-ISV than TDC (p < .001). The ADHD subgroups, defined by presence or absence of DESR, did not differ from each other. Conclusion: Increased RT-ISV characterizes ADHD regardless of comorbid DESR. Alongside similar findings in children and adults with ADHD, these results suggest that RT-ISV is related to cognitive rather than emotional dysregulation in ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Adulto , Criança , Regulação Emocional , Emoções , Humanos , Escalas de Graduação Psiquiátrica , Tempo de Reação
19.
J Am Acad Child Adolesc Psychiatry ; 59(3): 422-433, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31260788

RESUMO

OBJECTIVE: Impaired multisensory integration in autism spectrum disorder (ASD) may arise from functional dysconnectivity among brain systems. Our study examines the functional connectivity integration between primary modal sensory regions and heteromodal processing cortex in ASD, and whether abnormalities in network integration relate to clinical severity. METHOD: We studied a sample of 55 high-functioning ASD and 64 healthy control (HC) male children and adolescents (total n = 119, age range 7-18 years). Stepwise functional connectivity analysis (SFC) was applied to resting state functional magnetic resonance images (rsfMRI) to characterize the connectivity paths that link primary sensory cortices to higher-order brain cognitive functional circuits and to relate alterations in functional connectivity integration with three clinical scales: Social Communication Questionnaire, Social Responsiveness Scale, and Vineland Adaptive Behavior Scales. RESULTS: HC displayed typical functional connectivity transitions from primary sensory systems to association areas, but the ASD group showed altered patterns of multimodal sensory integration to heteromodal systems. Specifically, compared to the HC group, the ASD group showed the following: (1) hyperconnectivity in the visual cortex at initial link step distances; (2) hyperconnectivity between sensory unimodal regions and regions of the default mode network; and (3) hypoconnectivity between sensory unimodal regions and areas of the fronto-parietal and attentional networks. These patterns of hyper- and hypoconnectivity were associated with increased clinical severity in ASD. CONCLUSION: Networkwise reorganization in high-functioning ASD individuals affects strategic regions of unimodal-to-heteromodal cortical integration predicting clinical severity. In addition, SFC analysis appears to be a promising approach for studying the neural pathophysiology of multisensory integration deficits in ASD.


Assuntos
Transtorno do Espectro Autista , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Criança , Cognição , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais , Integração de Sistemas
20.
Hum Brain Mapp ; 40(16): 4645-4656, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31322305

RESUMO

Neuroimaging studies indicate that children with attention-deficit/hyperactivity disorder (ADHD) present alterations in several functional networks of the sensation-to-cognition spectrum. These alterations include functional overconnectivity within sensory regions and underconnectivity between sensory regions and neural hubs supporting higher order cognitive functions. Today, it is unknown whether this same pattern of alterations persists in adult patients with ADHD who had never been medicated for their condition. The aim of the present study was to assess whether medication-naïve adults with ADHD presented alterations in functional networks of the sensation-to-cognition spectrum. Thirty-one medication-naïve adults with ADHD and twenty-two healthy adults underwent resting-state functional magnetic resonance imaging (rs-fMRI). Stepwise functional connectivity (SFC) was used to characterize the pattern of functional connectivity between sensory seed regions and the rest of the brain at direct, short, intermediate, and long functional connectivity distances, thus covering the continuum from the sensory input to the neural hubs supporting higher order cognitive functions. As compared to controls, adults with ADHD presented increased SFC degree within primary sensory regions and decreased SFC degree between sensory seeds and higher order integration nodes. In addition, they exhibited decreased connectivity degree between sensory seeds and regions of the default-mode network. Consistently, the higher the score in clinical severity scales the lower connectivity degree between seed regions and the default mode network.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Sensação/fisiologia , Adulto , Mapeamento Encefálico , Função Executiva , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Escalas de Graduação Psiquiátrica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...