Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 439: 26-34, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27769713

RESUMO

In androgenetic alopecia, androgens impair dermal papilla-induced hair follicle stem cell (HFSC) differentiation inhibiting Wnt signaling. Wnt agonists/antagonists balance was analyzed after dihydrotestosterone (DHT) stimulation in androgen-sensitive dermal papilla cells (DPC) cultured as spheroids or monolayer. In both culture conditions, DHT stimulation downregulated Wnt5a and Wnt10b mRNA while the Wnt antagonist Dkk-1 was upregulated. Notably, tissue architecture of DPC-spheroids lowers Dkk-1 and enhances Wnt agonists' basal expression; probably contributing to DPC inductivity. The role of Wnt agonists/antagonists as mediators of androgen inhibition of DPC-induced HFSC differentiation was evaluated. Inductive DPC-conditioned medium supplemented with DKK-1 impaired HFSC differentiation mimicking androgens' action. This effect was associated with inactivation of Wnt/ß-catenin pathway in differentiating HFSC by both DPC-conditioned media. Moreover, addition of WNT10b to DPC-medium conditioned with DHT, overcame androgen inhibition of HFSC differentiation. Our results identify DKK1 and WNT10b as paracrine factors which modulate the HFSC differentiation inhibition involved in androgen-driven balding.


Assuntos
Alopecia/patologia , Androgênios/farmacologia , Diferenciação Celular/efeitos dos fármacos , Folículo Piloso/patologia , Células-Tronco/patologia , Proteínas Wnt/agonistas , Proteínas Wnt/antagonistas & inibidores , Alopecia/genética , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Humanos , Ligantes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
2.
Stem Cells Transl Med ; 3(10): 1209-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25161315

RESUMO

Tissue-engineered skin represents a useful strategy for the treatment of deep skin injuries and might contribute to the understanding of skin regeneration. The use of dermal papilla cells (DPCs) as a dermal component in a permanent composite skin with human hair follicle stem cells (HFSCs) was evaluated by studying the tissue-engineered skin architecture, stem cell persistence, hair regeneration, and graft-take in nude mice. A porcine acellular dermal matrix was seeded with HFSCs alone and with HFSCs plus human DPCs or dermal fibroblasts (DFs). In vitro, the presence of DPCs induced a more regular and multilayered stratified epidermis with more basal p63-positive cells and invaginations. The DPC-containing constructs more accurately mimicked the skin architecture by properly stratifying the differentiating HFSCs and developing a well-ordered epithelia that contributed to more closely recapitulate an artificial human skin. This acellular dermal matrix previously repopulated in vitro with HFSCs and DFs or DPCs as the dermal component was grafted in nude mice. The presence of DPCs in the composite substitute not only favored early neovascularization, good assimilation and remodeling after grafting but also contributed to the neovascular network maturation, which might reduce the inflammation process, resulting in a better healing process, with less scarring and wound contraction. Interestingly, only DPC-containing constructs showed embryonic hair bud-like structures with cells of human origin, presence of precursor epithelial cells, and expression of a hair differentiation marker. Although preliminary, these findings have demonstrated the importance of the presence of DPCs for proper skin repair.


Assuntos
Folículo Piloso/citologia , Transplante de Pele/métodos , Pele/citologia , Células-Tronco/citologia , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Xenoenxertos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA