Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068624

RESUMO

Cucurbita ficifolia is a squash grown from Mexico to Bolivia. Its ancestor is unknown, but it has limited compatibility with wild xerophytic Cucurbita from Mexico's highlands. We assembled the reference genome of C. ficifolia and assessed the genetic diversity and historical demography of the crop in Mexico with 2524 nuclear single nucleotide polymorphisms (SNPs). We also evaluated the gene flow between C. ficifolia and xerophytic taxa with 6292 nuclear and 440 plastome SNPs from 142 individuals sampled in 58 sites across their area of sympatry. Demographic modelling of C. ficifolia supports an eight-fold decrease in effective population size at about 2409 generations ago (95% CI = 464-12,393), whereas plastome SNPs support the expansion of maternal lineages ca. 1906-3635 years ago. Our results suggest a recent spread of C. ficifolia in Mexico, with high genetic diversity (π = 0.225, FST = 0.074) and inbreeding (FIS = 0.233). Coalescent models suggest low rates of gene flow with C. radicans and C. pedatifolia, whereas ABBA-BABA tests did not detect significant gene flow with wild taxa. Despite the ecogeographic proximity of C. ficifolia and its relatives, this crop persists as a highly isolated lineage of puzzling origin.

2.
Sci Rep ; 13(1): 8836, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258549

RESUMO

Despite multiple conservation efforts of the Mexican government, the leatherback turtle is at serious risk of extinction. In this study, we investigated the possible presence of a genetic bottleneck that could prevent the recovery of this species and compared these findings with those of the olive ridley turtle, which is in true recovery. Our results confirmed that a demographic change occurred in the past and the presence of two different leatherback turtle lineages that diverged approximately 13.5 million years ago. Local ecological knowledge (LEK) also described the presence of these two lineages and warned that one is at higher risk of extinction than the other. Genetic analysis confirmed 124 mutations between the two lineages, and much lower genetic diversity in one lineage than the other. Our study highlights and substantiates the power of mixing LEK, environmental history, and genetics to better understand conservation challenges of highly threatened species such as the leatherback turtle. Moreover, we report a new lineage of the leatherback turtle which may represent a distinct species. Future studies should focus on morphological, ecological, biogeographical, evolutionary and conservation perspectives for the analysis of the new lineage.


Assuntos
DNA Mitocondrial , Tartarugas , Animais , DNA Mitocondrial/genética , Tartarugas/genética , México , Meio Ambiente , Evolução Biológica
3.
PeerJ ; 10: e14117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213512

RESUMO

The recent emergence of the pathogen Batrachochytrium salamandrivorans (Bsal) is associated with rapid population declines of salamanders in Europe and its arrival to new areas could cause dramatic negative effects on other amphibian populations and species. Amphibian species, present in areas with high amphibian diversity such as Mexico, could be highly threatened due to the arrival of Bsal, particularly salamander species which are more vulnerable to chytridiomycosis caused by this pathogen. Thus, immediate surveillance is needed as a strategy to efficiently contend with this emerging infectious disease. In this study, we analyzed 490 wild and captive amphibians from 48 species across 76 sites in the North, Central, and South of Mexico to evaluate the presence of Bsal. Amphibians were sampled in sites with variable degrees of amphibian richness and suitability for Bsal according to previous studies. From the 76 sampling sites, 10 of them were located in areas with high amphibian richness and potential moderate to high Bsal habitat suitability. We did not detect Bsal in any of the samples, and no signs of the disease were observed in any individual at the time of sampling. Our results suggest that Bsal has not yet arrived at the sampled sites or could be at low prevalence within populations with low occurrence probability. This is the first study that evaluates the presence of Bsal in different regions and amphibian species in Mexico, which is the second most diverse country in salamander species in the world. We highlight the risk and the importance of continuing surveillance of Bsal in Mexico and discuss control strategies to avoid the introduction and spread of Bsal in the country.


Assuntos
Quitridiomicetos , Animais , México/epidemiologia , Anfíbios/microbiologia , Batrachochytrium , Urodelos/microbiologia
4.
PeerJ ; 10: e13802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910768

RESUMO

The most recent glacial cycles of the Pleistocene affected the distribution, population sizes, and levels of genetic structure of temperate-forest species in the main Mexican mountain systems. Our objective was to investigate the effects these cycles had on the genetic structure and distribution of a dominant species of the "mexical" vegetation across North and Central America. We studied the genetic diversity of Juniperus deppeana, a conifer distributed from the Southwestern United States to the highlands of Central America. We combined information of one plastid marker and two nuclear markers to infer phylogeographic structure, genetic diversity and demographic changes. We also characterized the climatic niche for each variety to infer the plausible area of suitability during past climatic conditions and to evaluate climatic niche discontinuities along with the species distribution. We found a marked phylogeographic structure separating the populations North and South of the Isthmus of Tehuantepec, with populations to the South of this barrier forming a distinct genetic cluster corresponding to Juniperus deppeana var. gamboana. We also found signals of population expansion in the Northern genetic cluster. Ecological niche modeling results confirmed climatic niche differences and discontinuities among J. deppeana varieties and heterogeneous responses to climatic oscillations. Overall, J. deppeana's genetic diversity has been marked by distribution shifts, population growth and secondary contact the North, and in situ permanence in the South since the last interglacial to the present. High genetic variation suggests a wide and climatically diverse distribution during climatic oscillations. We detected the existence of two main genetic clusters, supporting previous proposals that Juniperus deppeana and Juniperus gamboana may be considered two separate species.


Assuntos
Jacarés e Crocodilos , Juniperus , Animais , Juniperus/genética , Casca de Planta , Variação Genética/genética , Demografia
5.
PeerJ ; 9: e12168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34703665

RESUMO

Leptonycteris yerbabuenae, the lesser long-nosed bat is an abundant migratory nectar-feeding bat found in most of Mexico, and in some areas of northern Central America and small sections of southwestern USA. We analyzed the distribution of the maternal and paternal lineages of this species with phylogeographic methods based on two mitochondrial markers, Cyt-b and D-loop, and a marker located in the Y chromosome, DBY. We obtained tissue samples from 220 individuals from 23 localities. Levels of genetic diversity (haplotype diversity, Hd ) were high (Cyt-b = 0.757; D-loop = 0.8082; DBY = 0.9137). No clear patterns of population genetic structure were found for mitochondrial markers, while male genetic differentiation suggested the presence of two lineages: one from Mexican Pacific coast states and another from central-southern Mexico; in accordance to strong male philopatry and higher female migration. We used genealogical reconstructions based on Bayesian tools to calculate divergence times, and to test coalescent models to explain changes in L. yerbabuenae historical demography. Our results show that recent demographic changes were consistent with global climatic changes (∼130,000 kyr ago for Cyt-b and ∼160,000 kyr for D-loop) and divergence times dated from molecular genealogies exhibited older divergence times, Cyt-b (4.03 mya), D-loop (10.26 mya) and DBY (12.23 mya). Accordingly, the female lineage underwent demographic expansion associated to Pleistocene climate change, whereas the male lineage remained constant.

6.
Hortic Res ; 8(1): 109, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931618

RESUMO

Despite their economic importance and well-characterized domestication syndrome, the genomic impact of domestication and the identification of variants underlying the domestication traits in Cucurbita species (pumpkins and squashes) is currently lacking. Cucurbita argyrosperma, also known as cushaw pumpkin or silver-seed gourd, is a Mexican crop consumed primarily for its seeds rather than fruit flesh. This makes it a good model to study Cucurbita domestication, as seeds were an essential component of early Mesoamerican diet and likely the first targets of human-guided selection in pumpkins and squashes. We obtained population-level data using tunable Genotype by Sequencing libraries for 192 individuals of the wild and domesticated subspecies of C. argyrosperma across Mexico. We also assembled the first high-quality wild Cucurbita genome. Comparative genomic analyses revealed several structural variants and presence/absence of genes related to domestication. Our results indicate a monophyletic origin of this domesticated crop in the lowlands of Jalisco. We found evidence of gene flow between the domesticated and wild subspecies, which likely alleviated the effects of the domestication bottleneck. We uncovered candidate domestication genes that are involved in the regulation of growth hormones, plant defense mechanisms, seed development, and germination. The presence of shared selected alleles with the closely related species Cucurbita moschata suggests domestication-related introgression between both taxa.

7.
Am J Bot ; 108(2): 216-235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33576061

RESUMO

With more than 200 species, the genus Agave is one of the most interesting and complex groups of plants in the world, considering for instance its great diversity and adaptations. The adaptations include the production of a single, massive inflorescence (the largest among plants) where after growing for many years, sometimes more than 30, the rosette dies shortly afterward, and the remarkable coevolution with their main pollinators, nectarivorous bats, in particular of the genus Leptonycteris. The physiological adaptations of Agave species include a photosynthetic metabolism that allows efficient use of water and a large degree of succulence, helping to store water and resources for their massive flowering event. Ecologically, the agaves are keystone species on which numerous animal species depend for their subsistence due to the large amounts of pollen and nectar they produce, that support many pollinators, including bats, perching birds, hummingbirds, moths, and bees. Moreover, in many regions of Mexico and in the southwestern United States, agaves are dominant species. We describe the contributions of H. S. Gentry to the understanding of agaves and review recent advances on the study of the ecology and evolution of the genus. We analyze the present and inferred past distribution patterns of different species in the genus, describing differences in their climatic niche and adaptations to dry conditions. We interpret these patterns using molecular clock data and phylogenetic analyses and information of their coevolving pollinators and from phylogeographic, morphological, and ecological studies and discuss the prospects for their future conservation and management.


Assuntos
Agave , Animais , Abelhas , Ecologia , México , Filogenia , Polinização , Sudoeste dos Estados Unidos
8.
Am J Bot ; 107(3): 510-525, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32072632

RESUMO

PREMISE: Domestication usually involves local adaptation to environmental conditions. Cucurbita species are a promising model for studying these processes. Cucurbita moschata is the third major crop in the genus because of its economic value and because it displays high landrace diversity, but research about its genetic diversity, population structure, and phylogeography is limited. We aimed at understanding how geography and elevation shape the distribution of genetic diversity in C. moschata landraces in Mexico. METHODS: We sampled fruits from 24 localities throughout Mexico. We assessed 11 nuclear microsatellite loci, one mtDNA region, and three cpDNA regions but found no variation in cpDNA. We explored genetic structure with cluster analysis, and phylogeographic relationships with haplotype network analysis. RESULTS: Mitochondrial genetic diversity was high, and nuclear genetic differentiation among localities was intermediate compared to other domesticated Cucurbita. We found high levels of inbreeding. We recovered two mitochondrial lineages: highland (associated with the Trans-Mexican Volcanic Belt) and lowland. Nuclear microsatellites show that localities from the Yucatan Peninsula constitute a well-differentiated group. CONCLUSIONS: Mexico is an area of high diversity for C. moschata, and these landraces represent important plant genetic resources. In Mexico this species is characterized by divergence processes linked to an elevational gradient, which could be related to adaptation and may be of value for applications in agriculture. The Isthmus of Tehuantepec may be a partial barrier to gene flow. Morphological variation, agricultural management, and cultural differences may be related to this pattern of genetic structure, but further studies are needed.


Assuntos
Cucurbita , DNA Mitocondrial , Variação Genética , Haplótipos , México , Filogenia , Filogeografia
9.
J Mol Evol ; 87(9-10): 327-342, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31701178

RESUMO

Twenty-nine DNA regions of plastid origin have been previously identified in the mitochondrial genome of Cucurbita pepo (pumpkin; Cucurbitaceae). Four of these regions harbor homolog sequences of rbcL, matK, rpl20-rps12 and trnL-trnF, which are widely used as molecular markers for phylogenetic and phylogeographic studies. We extracted the mitochondrial copies of these regions based on the mitochondrial genome of C. pepo and, along with published sequences for these plastome markers from 13 Cucurbita taxa, we performed phylogenetic molecular analyses to identify inter-organellar transfer events in the Cucurbita phylogeny and changes in their nucleotide substitution rates. Phylogenetic reconstruction and tree selection tests suggest that rpl20 and rbcL mitochondrial paralogs arose before Cucurbita diversification whereas the mitochondrial matK and trnL-trnF paralogs emerged most probably later, in the mesophytic Cucurbita clade. Nucleotide substitution rates increased one order of magnitude in all the mitochondrial paralogs compared to their original plastid sequences. Additionally, mitochondrial trnL-trnF sequences obtained by PCR from nine Cucurbita taxa revealed higher nucleotide diversity in the mitochondrial than in the plastid copies, likely related to the higher nucleotide substitution rates in the mitochondrial region and loss of functional constraints in its tRNA genes.


Assuntos
Cucurbita/genética , Genoma Mitocondrial/genética , Plastídeos/genética , Evolução Biológica , Evolução Molecular , Genes de Plantas/genética , Genoma de Planta/genética , Mitocôndrias/genética , Filogenia , Análise de Sequência de DNA
10.
Proc Biol Sci ; 286(1908): 20191440, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31409251

RESUMO

Cucurbita pepo is an economically important crop, which consists of cultivated C. pepo ssp. pepo, and two wild taxa (C. pepo ssp. fraterna and C. pepo ssp. ovifera). We aimed at understanding the domestication and the diversity of C. pepo in Mexico. We used two chloroplast regions and nine nuclear microsatellite loci to assess the levels of genetic variation and structure for C. pepo ssp. pepo's landraces sampled in 13 locations in Mexico, five improved varieties, one C. pepo ssp. fraterna population and ornamental C. pepo ssp. ovifera. We tested four hypotheses regarding the origin of C. pepo ssp. pepo's ancestor through approximate Bayesian computation: C. pepo ssp. ovifera as the ancestor; C. pepo ssp. fraterna as the ancestor; an unknown extinct lineage as the ancestor; and C. pepo ssp. pepo as hybrid from C. pepo ssp. ovifera and C. pepo ssp. fraterna ancestors. Cucurbita pepo ssp. pepo showed high genetic variation and low genetic differentiation. Cucurbita pepo ssp. fraterna and C. pepo ssp. pepo shared two chloroplast haplotypes. The three subspecies were well differentiated for microsatellite loci. Cucurbita pepo ssp. fraterna was probably C. pepo ssp. pepo's wild ancestor, but subsequent hybridization between taxa complicate defining C. pepo ssp. pepo's ancestor.


Assuntos
Cucurbita/genética , Domesticação , Variação Genética , Repetições de Microssatélites/genética , Núcleo Celular/genética , Cloroplastos/genética , México , Filogeografia
11.
Mol Phylogenet Evol ; 128: 38-54, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036701

RESUMO

Knowledge of the role of geographical and ecological events associated to the divergence process of wild progenitors is important to understand the process of domestication. We analysed the temporal, spatial and ecological patterns of the diversification of Cucurbita, an American genus of worldwide economic importance. We conducted a phylogenetic analysis based on six chloroplast regions (5907 bp) to estimate diversification rates and dates of divergence between taxa. This is the first phylogenetic study to include C. radicans, a wild species that is endemic to the Trans Mexican Volcanic Belt. We performed analysis of ancestral area reconstruction and paleoreconstructions of species distribution models to understand shifts in wild species ranges. We used principal component analysis (PCA) and multivariate analysis of variance (MANOVA) to evaluate the environmental differentiation among taxa within each clade. The phylogenetic analyses showed good support for at least six independent domestication events in Cucurbita. The genus Cucurbita showed a time of divergence of 11.24 Ma (6.88-17 Ma 95% HDP), and the dates of divergence between taxa within each group ranged from 0.35 to 6.58 Ma, being the divergence between C. lundelliana and C. okeechobeensis subsp. martinezii the most recent. The diversification rate of the genus was constant through time. The diversification of most wild taxa occurred during the Pleistocene, and its date of divergence is concordant with the dates of divergence reported for specialized bees of the genera Xenoglossa and Peponapis, suggesting a process of coevolution between Cucurbita and their main pollinators that should be further investigated. Tests of environmental differentiation together with ancestral area reconstruction and species distribution models past projections suggest that divergence was promoted by the onset of geographic barriers and secondary range contraction and by expansion related to glacial-interglacial cycles.


Assuntos
Cucurbita/classificação , Ecossistema , Filogenia , Filogeografia , Biodiversidade , Cloroplastos/genética , Análise de Componente Principal , Fatores de Tempo
12.
Front Plant Sci ; 9: 400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662500

RESUMO

Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies' distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene flow among populations at a regional scale (<0.01), except for the Yucatan Peninsula, and the northern portion of the Pacific Coast. Our analyses suggested that the Isthmus of Tehuantepec is an effective barrier isolating southern populations. Our SDM results indicate that environmental characteristics in the Balsas-Jalisco region, a potential center of domestication, were suitable for the presence of sororia during the Holocene.

13.
Mol Phylogenet Evol ; 94(Pt A): 171-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26343460

RESUMO

The hypothesis that endemic species could have originated by the isolation and divergence of peripheral populations of widespread species can be tested through the use of ecological niche models (ENMs) and statistical phylogeography. The joint use of these tools provides complementary perspectives on historical dynamics and allows testing hypotheses regarding the origin of endemic taxa. We used this approach to infer the historical processes that have influenced the origin of a species endemic to the Mexican Plateau (Cynomys mexicanus) and its divergence from a widespread ancestor (Cynomys ludovicianus), and to test whether this endemic species originated through peripatric speciation. We obtained genetic data for 295 individuals for two species of black-tailed prairie dogs (C. ludovicianus and C. mexicanus). Genetic data consisted of mitochondrial DNA sequences (cytochrome b and control region), and 10 nuclear microsatellite loci. We estimated dates of divergence between species and between lineages within each species and performed ecological niche modelling (Present, Last Glacial Maximum and Last Interglacial) to determine changes in the distribution range of both species during the Pleistocene. Finally, we used Bayesian inference methods (DIYABC) to test different hypotheses regarding the divergence and demographic history of these species. Data supported the hypothesis of the origin of C. mexicanus from a peripheral population isolated during the Pleistocene [∼230,000 years ago (0.1-0.43 Ma 95% HPD)], with a Pleistocene-Holocene (∼9,000-11,000 years ago) population expansion (∼10-fold increase in population size). We identified the presence of two possible refugia in the southern area of the distribution range of C. ludovicianus and another, consistent with the distribution range of C. mexicanus. Our analyses suggest that Pleistocene climate change had a strong impact in the distribution of these species, promoting peripatric speciation for the origin of C. mexicanus and lineage divergence within C. ludovicianus.


Assuntos
Mudança Climática , Especiação Genética , Filogenia , Sciuridae/genética , Animais , Teorema de Bayes , Mudança Climática/história , Citocromos b/genética , DNA Mitocondrial/genética , Clima Desértico , História Antiga , México , Repetições de Microssatélites/genética , Filogeografia , Densidade Demográfica , Sciuridae/classificação
14.
J Hered ; 106 Suppl 1: 478-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26245783

RESUMO

Species of restricted distribution are considered more vulnerable to extinction because of low levels of genetic variation relative to widespread taxa. Species of the subgenus Cynomys are an excellent system to compare genetic variation and degree of genetic structure in contrasting geographic distributions. We assessed levels of genetic variation, genetic structure, and genetic differentiation in widespread Cynomys ludovicianus and restricted C. mexicanus using 1997bp from the cytochrome b and control region (n = 223 C. ludovicianus; 77 C. mexicanus), and 10 nuclear microsatellite loci (n = 207 and 78, respectively). Genetic variation for both species was high, and genetic structure in the widespread species was higher than in the restricted species. C. mexicanus showed values of genetic variation, genetic structure, and genetic differentiation similar to C. ludovicianus at smaller geographic scales. Results suggest the presence of at least 2 historical refuges for C. ludovicianus and that the Sierra Madre Occidental represents a barrier to gene flow. Chihuahua and New Mexico possess high levels of genetic diversity and should be protected, while Sonora should be treated as an independent management unit. For C. mexicanus, connectivity among colonies is very important and habitat fragmentation and habitat loss should be mitigated to maintain gene flow.


Assuntos
Variação Genética , Genética Populacional , Sciuridae/genética , Animais , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Fluxo Gênico , Frequência do Gene , Pradaria , México , Repetições de Microssatélites , Modelos Genéticos , New Mexico , Sciuridae/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...