Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 34(29)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37019100

RESUMO

The increasing energy demand and the ever more pressing need for clean technologies of energy conversion pose one of the most urgent and complicated issues of our age. Thermoelectricity, namely the direct conversion of waste heat into electricity, is a promising technique based on a long-standing physical phenomenon, which still has not fully developed its potential, mainly due to the low efficiency of the process. In order to improve the thermoelectric performance, a huge effort is being made by physicists, materials scientists and engineers, with the primary aims of better understanding the fundamental issues ruling the improvement of the thermoelectric figure of merit, and finally building the most efficient thermoelectric devices. In this Roadmap an overview is given about the most recent experimental and computational results obtained within the Italian research community on the optimization of composition and morphology of some thermoelectric materials, as well as on the design of thermoelectric and hybrid thermoelectric/photovoltaic devices.

2.
Nanotechnology ; 34(31)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37116478

RESUMO

The half Heusler TiNiSn compound is a model system for understanding the relationship among structural, electronic, microstructural and thermoelectric properties. However, the role of defects that deviate from the ideal crystal structure is far from being fully described. In this work, TiNi1+xSn alloys (x= 0, 0.03, 0.06, 0.12) were synthesized by arc melting elemental metals and annealed to achieve equilibrium conditions. Experimental values of the Seebeck coefficient and electrical resistivity, obtained from this work and from the literature, scale with the measured carrier concentration, due to different amounts of secondary phases and interstitial nickel. Density functional theory calculations showed that the presence of both interstitial Ni defects and composition conserving defects narrows the band gap with respect to the defect free structure, affecting the transport properties. Accordingly, results of experimental investigations have been explained confirming that interstitial Ni defects, as well as secondary phases, promote a metallic behavior, raising the electrical conductivity and lowering the absolute values of the Seebeck coefficient.

3.
Radiat Res ; 191(2): 154-161, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30499384

RESUMO

The harmful effects of space radiation pose a serious health risk to astronauts participating in future long-term missions. Such radiation effects must be considered in the design phase of space vessels as well as in mission planning. Crew radioprotection during long periods in deep space (e.g., transit to Mars) represents a major challenge, especially because of the strong restrictions on the passive shielding load allowed on-board the vessel. Novel materials with better shielding performance compared to the "gold standard" high-density polyethylene are therefore greatly needed. Because of the high hydrogen content of hydrides, lithium hydride has been selected as a starting point for further studies of promising candidates to be used as passive shielding materials. In the current experimental campaign, the shielding performance of lithium hydride was assessed by measuring normalized dose, primary beam attenuation and neutron ambient dose equivalent using 430 MeV/u 12C, 600 MeV/u 12C and 228 MeV proton beams. The experimental data were then compared to predictions from the Monte Carlo transport codes PHITS and GRAS. The experimental results show an increased shielding effectiveness of lithium hydride compared to reference materials like polyethylene. For instance, the attenuation length for 600 MeV/u 12C primary particles in lithium hydride is approximately 20% shorter compared to polyethylene. Furthermore, the comparison results between both transport codes indicates that the standard Tripathi-based total reaction cross-section model of PHITS cannot accurately reproduce the presented experimental data, whereas GRAS shows reasonable agreement.


Assuntos
Radiação Cósmica , Compostos de Lítio/química , Proteção Radiológica/métodos , Hidrogênio/análise , Método de Monte Carlo , Doses de Radiação
4.
Appl Spectrosc ; 71(10): 2278-2285, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28691852

RESUMO

The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO4)2) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions. It was found that in the anhydrous composite system the dispersed Mg(ClO4)2 salt retains its molecular structure, because Mg2+ cations are still surrounded by their [ClO4]- counter-anions; at the same time, the salt and the polymeric matrix chemically interact each other at the molecular level. These interactions gradually vanish in the presence of water, and disappear in the fully hydrated composite system, where the Mg2+ cations are completely solvated by the water molecules.

5.
J Nanosci Nanotechnol ; 17(3): 1650-656, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-29694763

RESUMO

We report on rapid solidification of an Ag(16.7)Sb(30.0)Te(53.3) compound using planar flow casting to stabilize the δ-AgSbTe2 single phase and avoid precipitation of the interconnected Sb2Te3 phase, which leads to deterioration of thermoelectric properties. Rapidly solidified samples are in form of flakes with different thickness (60­400 µm). Precipitation of Sb2Te3 phase is fully inhibited in thin flakes (thickness below 100 µm), which consist of an homogeneous δ-AgSbTe2 matrix, whereas isolated Sb2Te3 precipitates, dispersed throughout the δ-AgSbTe2 matrix, were found in thick flakes (thickness above 100 µm). The lattice parameter of the δ-AgSbTe2 phase progressively increases with the cooling rate, indicating progressive supersaturation of the matrix for high degree of supercooling. Bulk specimens were prepared by hot pressing of the rapidly solidified flakes to evaluate thermoelectric properties. After sintering of the rapidly solidified flakes, the differential scanning calorimetry (DSC) traces indicates partial decomposition of the non equilibrium δ-AgSbTe2 into the stable phases. Measurements of the thermoelectric transport properties indicate the positive effects of rapid solidification on thermal conductivity and Seebeck coefficient and its negative effect on electrical conductivity, suggesting an operative way to improve thermoelectric performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...