Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Scand J Immunol ; 69(6): 479-91, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19439008

RESUMO

The systemic immune response induced by non-infectious agents is called systemic inflammatory response syndrome (SIRS) and infection-induced systemic immune response is called sepsis. The host inflammatory response in SIRS and sepsis is similar and may lead to multiple organ dysfunction syndrome (MODS) and ultimately death. The mortality and morbidity in SIRS and sepsis (i.e. critical illness) remain high despite advances in diagnostic and organ supporting possibilities in intensive care units. In critical illness, the acute immune response is organized and executed by innate immunity influenced by the neuroendocrine system. This response starts with sensing of danger by pattern-recognition receptors on the immune competent cells and endothelium. The sensed danger signals, through specific signalling pathways, activate nuclear transcription factor kappaB and other transcription factors and gene regulatory systems which up-regulate the expression of pro-inflammatory mediators. The plasma cascades are also activated which together with the produced pro-inflammatory mediators stimulate further the production of inflammatory biomarkers. The acute inflammatory response underlies the pathophysiological mechanisms involved in the development of MODS. The inflammatory mediators directly affect organ function and cause a decline in remote organ function by mediating the production of nitric oxide leading to mitochondrial anergy and cytopathic hypoxia, a condition of cellular inability to use oxygen. Understanding the mechanisms of acute immune responses in critical illness is necessary for the development of urgently needed therapeutics. The aim of this review is to provide a description of the key components and mechanisms involved in the immune response in SIRS and sepsis.


Assuntos
Imunidade Inata , Sepse/imunologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Animais , Humanos
2.
J Perinatol ; 28 Suppl 3: S116-9, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19057601

RESUMO

The complement system is part of the host defense with a number of biological effects, most of which contribute to the inflammatory reaction by activation of cells like leukocytes and endothelial cells. An intact complement system is required for protection against infection and for maintaining internal inflammatory homeostasis. However, the system is a double-edged sword as improperly or uncontrolled activation is disadvantageous and potentially harmful for the host. Meconium aspiration syndrome (MAS) is associated with a local inflammatory reaction in the lungs, frequently described as a chemical pneumonitis. Cytokines, arachidonic acid metabolites and reactive oxygen species are involved in this reaction. We have recently documented that meconium is a potent activator of complement in vitro and in an experimental piglet model of MAS, the latter presenting with an inflammatory profile closely resembling systemic inflammatory response syndrome. We postulate that complement activation may contribute to the pathogenesis of MAS.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento/metabolismo , Síndrome de Aspiração de Mecônio/complicações , Pneumonia/induzido quimicamente , Humanos , Recém-Nascido , Pulmão/fisiopatologia , Síndrome de Aspiração de Mecônio/metabolismo
3.
Scand J Immunol ; 68(1): 75-84, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18466195

RESUMO

We developed a live Escherichia coli model of acute sepsis in pigs with emphasize on biomarkers reflecting the early inflammatory response of sepsis. Healthy pigs, 25-35 kg, were challenged intravenously (IV) (n = 12) or intrapulmonary (n = 6) with live E. coli and observed for 3 and 5 h respectively. Control pigs received culture medium (n = 6 + 3). Haemodynamic parameters and a broad panel of inflammatory mediators were measured. The dose of bacteria was carefully titrated to obtain a condition resembling the early phase of human septic shock. The IV group displayed a pro-inflammatory response [significant increase in tumour necrosis factor-alpha, interleukin (IL)-6 and IL-8] and an early anti-inflammatory response (significant increase in IL-10). For the first time, we demonstrate a significant increase in IL-12 and matrix metalloproteinase-9 (MMP) early in pig sepsis. Coagulation was activated (significant increase in thrombin-antithrombin complexes) and there was a significant decrease in the serum proteins suggesting capillary leakage. Haemodynamic parameters reflected a septic condition with significant decrease in systemic blood pressure, increases in heart rate, pulmonary artery pressure and base deficit. None of these changes was observed in the control group. Interleukin-1beta and vascular endothelial growth factor increased in both groups. Nitric oxide measurements suggested an initial pulmonary vascular endothelial inflammatory response. The intrapulmonary group, which did not resemble septic condition, showed a substantial increase in MMP-9. In this porcine model of sepsis, IL-12 and MMP-9 were detected for the first time. These biomarkers may have an impact in the understanding and future treatment of sepsis.


Assuntos
Biomarcadores/sangue , Mediadores da Inflamação/sangue , Sepse/sangue , Sepse/fisiopatologia , Animais , Modelos Animais de Doenças , Escherichia coli , Hemodinâmica , Interleucina-12/sangue , Metaloproteinase 9 da Matriz/sangue , Sepse/imunologia , Suínos
4.
Scand J Immunol ; 61(3): 217-25, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15787738

RESUMO

The pathophysiology of meconium aspiration syndrome (MAS) is complex. We recently showed that meconium is a potent activator of complement. In the present study, we investigated whether the complement activation occurring in experimental MAS is associated with a systemic inflammatory response as judged by granulocyte activation and cytokine and chemokine release. MAS was induced by the instillation of meconium into the lungs of newborn piglets (n = 8). Control animals (n = 5) received saline under otherwise identical conditions. Haemodynamic and lung dynamic data were recorded. Complement activation, revealed by the terminal sC5b-9 complex (TCC), and cytokines [interleukin (IL)-6 and IL-8] were measured in plasma samples by enzyme immunoassays. The expression of CD18, CD11b and oxidative burst in granulocytes was measured in whole blood by flow cytometry. Plasma TCC increased rapidly in the MAS animals in contrast with controls (P < 0.0005). The TCC concentration correlated closely with oxygenation index (r = 0.48, P < 0.0005) and ventilation index (r = 0.57, P < 0.0005) and inversely with lung compliance (r = -0.63, P < 0.0005). IL-6 and IL-8 increased in MAS animals compared with the controls (P = 0.002 and P < 0.001, respectively). Granulocyte oxidative burst declined significantly in the MAS animals compared with the controls (P < 0.02). TCC correlated significantly with IL-6 (r = 0.64, P < 0.0005) and IL-8 (r = 0.32; P = 0.03) and inversely with oxidative burst (r = -0.37; P = 0.02). A systemic inflammatory response associated with complement activation is seen in experimental MAS. This reaction may contribute to the pathogenesis of MAS.


Assuntos
Ativação do Complemento , Síndrome de Aspiração de Mecônio/complicações , Síndrome de Aspiração de Mecônio/imunologia , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Animais , Animais Recém-Nascidos , Citocinas/biossíntese , Modelos Animais de Doenças , Granulócitos/imunologia , Granulócitos/metabolismo , Humanos , Recém-Nascido , Pulmão/fisiopatologia , Síndrome de Aspiração de Mecônio/fisiopatologia , Explosão Respiratória , Sus scrofa , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...