Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Redox Biol ; 72: 103153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608580

RESUMO

Carbon monoxide (CO), a gaseous signaling molecule, has shown promise in preventing body weight gain and metabolic dysfunction induced by high fat diet (HFD), but the mechanisms underlying these effects are largely unknown. An essential component in response to HFD is the gut microbiome, which is significantly altered during obesity and represents a target for developing new therapeutic interventions to fight metabolic diseases. Here, we show that CO delivered to the gut by oral administration with a CO-releasing molecule (CORM-401) accumulates in faeces and enriches a variety of microbial species that were perturbed by a HFD regimen. Notably, Akkermansia muciniphila, which exerts salutary metabolic effects in mice and humans, was strongly depleted by HFD but was the most abundant gut species detected after CORM-401 treatment. Analysis of bacterial transcripts revealed a restoration of microbial functional activity, with partial or full recovery of the Krebs cycle, ß-oxidation, respiratory chain and glycolysis. Mice treated with CORM-401 exhibited normalization of several plasma and fecal metabolites that were disrupted by HFD and are dependent on Akkermansia muciniphila's metabolic activity, including indoles and tryptophan derivatives. Finally, CORM-401 treatment led to an improvement in gut morphology as well as reduction of inflammatory markers in colon and cecum and restoration of metabolic profiles in these tissues. Our findings provide therapeutic insights on the efficacy of CO as a potential prebiotic to combat obesity, identifying the gut microbiota as a crucial target for CO-mediated pharmacological activities against metabolic disorders.


Assuntos
Monóxido de Carbono , Dieta Hiperlipídica , Microbioma Gastrointestinal , Obesidade , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Obesidade/microbiologia , Monóxido de Carbono/metabolismo , Dieta Hiperlipídica/efeitos adversos , Administração Oral , Akkermansia/efeitos dos fármacos , Masculino , Fezes/microbiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
2.
mSystems ; 9(4): e0140123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38441031

RESUMO

The microbial utilization of dietary carbohydrates is closely linked to the pivotal role of the gut microbiome in human health. Inherent to the modulation of complex microbial communities, a prebiotic implies the selective utilization of a specific substrate, relying on the metabolic capacities of targeted microbes. In this study, we investigated the metabolic capacities of 17 commensal bacteria of the human gut microbiome toward dietary carbohydrates with prebiotic potential. First, in vitro experiments allowed the classification of bacterial growth and fermentation profiles in response to various carbon sources, including agave inulin, corn fiber, polydextrose, and citrus pectin. The influence of phylogenetic affiliation appeared to statistically outweigh carbon sources in determining the degree of carbohydrate utilization. Second, we narrowed our focus on six commensal bacteria representative of the Bacteroidetes and Firmicutes phyla to perform an untargeted high-resolution liquid chromatography-mass spectrometry metabolomic analysis: Bacteroides xylanisolvens, Bacteroides thetaiotaomicron, Bacteroides intestinalis, Subdoligranulum variabile, Roseburia intestinalis, and Eubacterium rectale exhibited distinct metabolomic profiles in response to different carbon sources. The relative abundance of bacterial metabolites was significantly influenced by dietary carbohydrates, with these effects being strain-specific and/or carbohydrate-specific. Particularly, the findings indicated an elevation in short-chain fatty acids and other metabolites, including succinate, gamma-aminobutyric acid, and nicotinic acid. These metabolites were associated with putative health benefits. Finally, an RNA-Seq transcriptomic approach provided deeper insights into the underlying mechanisms of carbohydrate metabolization. Restricting our focus on four commensal bacteria, including B. xylanisolvens, B. thetaiotaomicron, S. variabile, and R. intestinalis, carbon sources did significantly modulate the level of bacterial genes related to the enzymatic machinery involved in the metabolization of dietary carbohydrates. This study provides a holistic view of the molecular strategies induced during the dynamic interplay between dietary carbohydrates with prebiotic potential and gut commensal bacteria. IMPORTANCE: This study explores at a molecular level the interactions between commensal health-relevant bacteria and dietary carbohydrates holding prebiotic potential. We showed that prebiotic breakdown involves the specific activation of gene expression related to carbohydrate metabolism. We also identified metabolites produced by each bacteria that are potentially related to our digestive health. The characterization of the functional activities of health-relevant bacteria toward prebiotic substances can yield a better application of prebiotics in clinical interventions and personalized nutrition. Overall, this study highlights the importance of identifying the impact of prebiotics at a low resolution of the gut microbiota to characterize the activities of targeted bacteria that can play a crucial role in our health.


Assuntos
Carboidratos da Dieta , Prebióticos , Humanos , Carboidratos da Dieta/metabolismo , Filogenia , Bactérias/genética , Carbono/metabolismo
3.
Epilepsia ; 65(4): 929-943, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38339978

RESUMO

OBJECTIVE: Status epilepticus (SE) is a life-threatening prolonged epileptic seizure that affects ~40 per 100 000 people yearly worldwide. The persistence of seizures may lead to excitotoxic processes, neuronal loss, and neuroinflammation, resulting in long-term neurocognitive and functional disabilities. A better understanding of the pathophysiological mechanisms underlying SE consequences is crucial for improving SE management and preventing secondary neuronal injury. METHODS: We conducted a comprehensive untargeted metabolomic analysis, using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), on plasma and cerebrospinal fluid (CSF) samples from 78 adult patients with SE and 107 control patients without SE, including 29 with CSF for both groups. The metabolomic fingerprints were compared between patients with SE and controls. Metabolites with differences in relative abundances that could not be attributed to treatment or nutrition provided in the intensive care unit were isolated. Enrichment analysis was performed on these metabolites to identify the most affected pathways. RESULTS: We identified 76 metabolites in the plasma and 37 in the CSF that exhibited differential expression in patients with SE compared to controls. The enrichment analysis revealed that metabolic dysregulations in patients with SE affected primarily amino acid metabolism (including glutamate, alanine, tryptophan, glycine, and serine metabolism), pyrimidine metabolism, and lipid homeostasis. Specifically, patients with SE had elevated levels of pyruvate, quinolinic acid, and keto butyric acid levels, along with lower levels of arginine, N-acetylaspartylglutamate (NAAG), tryptophan, uracil, and uridine. The tryptophan kynurenine pathway was identified as the most significantly altered in SE, resulting in the overproduction of quinolinic acid, an N-methyl-d-aspartate (NMDA) receptor agonist with pro-inflammatory properties. SIGNIFICANCE: This study has identified several pathways that may play pivotal roles in SE consequences, such as the tryptophan kynurenine pathway. These findings offer novel perspectives for the development of neuroprotective therapeutics.


Assuntos
Cinurenina , Estado Epiléptico , Adulto , Humanos , Cinurenina/líquido cefalorraquidiano , Triptofano/metabolismo , Estudos de Casos e Controles , Ácido Quinolínico/líquido cefalorraquidiano , Convulsões
4.
Cell Death Discov ; 10(1): 48, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272861

RESUMO

Glaucoma is a multifactorial neurodegenerative disease characterized by the progressive and irreversible degeneration of the optic nerve and retinal ganglion cells. Despite medical advances aiming at slowing degeneration, around 40% of treated glaucomatous patients will undergo vision loss. It is thus of utmost importance to have a better understanding of the disease and to investigate more deeply its early causes. The transcriptional coactivator YAP, an important regulator of eye homeostasis, has recently drawn attention in the glaucoma research field. Here we show that Yap conditional knockout mice (Yap cKO), in which the deletion of Yap is induced in both Müller glia (i.e. the only retinal YAP-expressing cells) and the non-pigmented epithelial cells of the ciliary body, exhibit a breakdown of the aqueous-blood barrier, accompanied by a progressive collapse of the ciliary body. A similar phenotype is observed in human samples that we obtained from patients presenting with uveitis. In addition, aged Yap cKO mice harbor glaucoma-like features, including deregulation of key homeostatic Müller-derived proteins, retinal vascular defects, optic nerve degeneration and retinal ganglion cell death. Finally, transcriptomic analysis of Yap cKO retinas pointed to early-deregulated genes involved in extracellular matrix organization potentially underlying the onset and/or progression of the observed phenotype. Together, our findings reveal the essential role of YAP in preserving the integrity of the ciliary body and retinal ganglion cells, thereby preventing the onset of uveitic glaucoma-like features.

5.
Allergy ; 79(2): 471-484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010857

RESUMO

BACKGROUND: Food allergy (FA) is an inappropriate immunological response to food proteins resulting from an impaired induction of oral tolerance. Various early environmental factors can affect the establishment of intestinal homeostasis, predisposing to FA in early life. In this context, we aimed to assess the effect of chronic perinatal exposure to food-grade titanium dioxide (fg-TiO2 ), a common food additive. METHODS: Dams were fed a control versus fg-TiO2 -enriched diet from preconception to weaning, and their progeny received the same diet at weaning. A comprehensive analysis of baseline intestinal and systemic homeostasis was performed in offspring 1 week after weaning by assessing gut barrier maturation and microbiota composition, and local and systemic immune system and metabolome. The effect of fg-TiO2 on the susceptibility of progeny to develop oral tolerance versus FA to cow's milk proteins (CMP) was performed starting at the same baseline time-point, using established models. Sensitization to CMP was investigated by measuring ß-lactoglobulin and casein-specific IgG1 and IgE antibodies, and elicitation of the allergic reaction by measuring mouse mast cell protease (mMCP1) in plasma collected after an oral food challenge. RESULTS: Perinatal exposure to fg-TiO2 at realistic human doses led to an increased propensity to develop FA and an impaired induction of oral tolerance only in young males, which could be related to global baseline alterations in intestinal barrier, gut microbiota composition, local and systemic immunity, and metabolism. CONCLUSIONS: Long-term perinatal exposure to fg-TiO2 alters intestinal homeostasis establishment and predisposes to food allergy, with a clear gender effect.


Assuntos
Hipersensibilidade Alimentar , Hipersensibilidade a Leite , Humanos , Masculino , Gravidez , Feminino , Bovinos , Camundongos , Animais , Hipersensibilidade Alimentar/etiologia , Hipersensibilidade Alimentar/metabolismo , Imunoglobulina G , Caseínas , Dieta , Homeostase
6.
Circ Res ; 134(2): 189-202, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38152893

RESUMO

BACKGROUND: Diabetes is a major risk factor for atherosclerotic cardiovascular diseases with a 2-fold higher risk of cardiovascular events in people with diabetes compared with those without. Circulating monocytes are inflammatory effector cells involved in both type 2 diabetes (T2D) and atherogenesis. METHODS: We investigated the relationship between circulating monocytes and cardiovascular risk progression in people with T2D, using phenotypic, transcriptomic, and metabolomic analyses. cardiovascular risk progression was estimated with coronary artery calcium score in a cohort of 672 people with T2D. RESULTS: Coronary artery calcium score was positively correlated with blood monocyte count and frequency of the classical monocyte subtype. Unsupervised k-means clustering based on monocyte subtype profiles revealed 3 main endotypes of people with T2D at varying risk of cardiovascular events. These observations were confirmed in a validation cohort of 279 T2D participants. The predictive association between monocyte count and major adverse cardiovascular events was validated through an independent prospective cohort of 757 patients with T2D. Integration of monocyte transcriptome analyses and plasma metabolomes showed a disruption of mitochondrial pathways (tricarboxylic acid cycle, oxidative phosphorylation pathway) that underlined a proatherogenic phenotype. CONCLUSIONS: In this study, we provide evidence that frequency and monocyte phenotypic profile are closely linked to cardiovascular risk in patients with T2D. The assessment of monocyte frequency and count is a valuable predictive marker for risk of cardiovascular events in patients with T2D. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04353869.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Monócitos/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Fatores de Risco , Estudos Prospectivos , Cálcio/metabolismo , Fenótipo , Fatores de Risco de Doenças Cardíacas
7.
J. physiol. biochem ; 79(2): 397-413, may. 2023.
Artigo em Inglês | IBECS | ID: ibc-222551

RESUMO

Obesity is a major contributor to the silent and progressive development of type 2 diabetes (T2D) whose prevention could be improved if individuals at risk were identified earlier. Our aim is to identify early phenotypes that precede T2D in diet-induced obese minipigs. We fed four groups of minipigs (n = 5–10) either normal-fat or high-fat high-sugar diet during 2, 4, or 6 months. Morphometric features were recorded, and metabolomics and clinical parameters were assessed on fasting plasma samples. Multivariate statistical analysis on 46 morphometrical and clinical parameters allowed to differentiate 4 distinct phenotypes: NFC (control group) and three others (HF2M, HF4M, HF6M) corresponding to the different stages of the obesity progression. Compared to NFC, we observed a rapid progression of body weight and fat mass (4-, 7-, and tenfold) in obese phenotypes. Insulin resistance (IR; 2.5-fold increase of HOMA-IR) and mild dyslipidemia (1.2- and twofold increase in total cholesterol and HDL) were already present in the HF2M and remained stable in HF4M and HF6M. Plasma metabolome revealed subtle changes of 23 metabolites among the obese groups, including a progressive switch in energy metabolism from amino acids to lipids, and a transient increase in de novo lipogenesis and TCA-related metabolites in HF2M. Low anti-oxidative capacities and anti-inflammatory response metabolites were found in the HF4M, and a perturbed hexose metabolism was observed in HF6M. Overall, we show that IR and progressively obese minipigs reveal phenotype-specific metabolomic signatures for which some of the identified metabolites could be considered as potential biomarkers of early progression to TD2. (AU)


Assuntos
Animais , Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina , Insulina/metabolismo , Metabolômica , Obesidade/metabolismo , Porco Miniatura/metabolismo
8.
Front Immunol ; 14: 1108895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006253

RESUMO

Background: Eosinophilic oesophagitis (EoE) is a chronic food allergic disorder limited to oesophageal mucosa whose pathogenesis is still only partially understood. Moreover, its diagnosis and follow-up need repeated endoscopies due to absence of non-invasive validated biomarkers. In the present study, we aimed to deeply describe local immunological and molecular components of EoE in well-phenotyped children, and to identify potential circulating EoE-biomarkers. Methods: Blood and oesophageal biopsies were collected simultaneously from French children with EoE (n=17) and from control subjects (n=15). Untargeted transcriptomics analysis was performed on mRNA extracted from biopsies using microarrays. In parallel, we performed a comprehensive analysis of immune components on both cellular and soluble extracts obtained from both biopsies and blood, using flow cytometry. Finally, we performed non-targeted plasma metabolomics using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Uni/multivariate supervised and non-supervised statistical analyses were then conducted to identify significant and discriminant components associated with EoE within local and/or systemic transcriptomics, immunologic and metabolomics datasets. As a proof of concept, we conducted multi-omics data integration to identify a plasmatic signature of EoE. Results: French children with EoE shared the same transcriptomic signature as US patients. Network visualization of differentially expressed (DE) genes highlighted the major dysregulation of innate and adaptive immune processes, but also of pathways involved in epithelial cells and barrier functions, and in perception of chemical stimuli. Immune analysis of biopsies highlighted EoE is associated with dysregulation of both type (T) 1, T2 and T3 innate and adaptive immunity, in a highly inflammatory milieu. Although an immune signature of EoE was found in blood, untargeted metabolomics more efficiently discriminated children with EoE from control subjects, with dysregulation of vitamin B6 and various amino acids metabolisms. Multi-blocks integration suggested that an EoE plasma signature may be identified by combining metabolomics and cytokines datasets. Conclusions: Our study strengthens the evidence that EoE results from alterations of the oesophageal epithelium associated with altered immune responses far beyond a simplistic T2 dysregulation. As a proof of concept, combining metabolomics and cytokines data may provide a set of potential plasma biomarkers for EoE diagnosis, which needs to be confirmed on a larger and independent cohort.


Assuntos
Esofagite Eosinofílica , Humanos , Criança , Multiômica , Citocinas/metabolismo , Imunidade Adaptativa , Biomarcadores
9.
Metabolites ; 13(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984754

RESUMO

Dendritic cells (DCs) are essential immune cells for defense against external pathogens. Upon activation, DCs undergo profound metabolic alterations whose precise nature remains poorly studied at a large scale and is thus far from being fully understood. The goal of the present work was to develop a reliable and accurate untargeted metabolomics workflow to get a deeper insight into the metabolism of DCs when exposed to an infectious agent (lipopolysaccharide, LPS, was used to mimic bacterial infection). As DCs transition rapidly from a non-adherent to an adherent state upon LPS exposure, one of the leading analytical challenges was to implement a single protocol suitable for getting comparable metabolomic snapshots of those two cellular states. Thus, a thoroughly optimized and robust sample preparation method consisting of a one-pot solvent-assisted method for the simultaneous cell lysis/metabolism quenching and metabolite extraction was first implemented to measure intracellular DC metabolites in an unbiased manner. We also placed special emphasis on metabolome coverage and annotation by using a combination of hydrophilic interaction liquid chromatography and reverse phase columns coupled to high-resolution mass spectrometry in conjunction with an in-house developed spectral database to identify metabolites at a high confidence level. Overall, we were able to characterize up to 171 unique meaningful metabolites in DCs. We then preliminarily compared the metabolic profiles of DCs derived from monocytes of 12 healthy donors upon in vitro LPS activation in a time-course experiment. Interestingly, the resulting data revealed differential and time-dependent activation of some particular metabolic pathways, the most impacted being nucleotides, nucleotide sugars, polyamines pathways, the TCA cycle, and to a lesser extent, the arginine pathway.

10.
Gut ; 72(8): 1581-1591, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36788015

RESUMO

BACKGROUND AND AIMS: Current prognostic scores of patients with acutely decompensated cirrhosis (AD), particularly those with acute-on-chronic liver failure (ACLF), underestimate the risk of mortality. This is probably because systemic inflammation (SI), the major driver of AD/ACLF, is not reflected in the scores. SI induces metabolic changes, which impair delivery of the necessary energy for the immune reaction. This investigation aimed to identify metabolites associated with short-term (28-day) death and to design metabolomic prognostic models. METHODS: Two prospective multicentre large cohorts from Europe for investigating ACLF and development of ACLF, CANONIC (discovery, n=831) and PREDICT (validation, n=851), were explored by untargeted serum metabolomics to identify and validate metabolites which could allow improved prognostic modelling. RESULTS: Three prognostic metabolites strongly associated with death were selected to build the models. 4-Hydroxy-3-methoxyphenylglycol sulfate is a norepinephrine derivative, which may be derived from the brainstem response to SI. Additionally, galacturonic acid and hexanoylcarnitine are associated with mitochondrial dysfunction. Model 1 included only these three prognostic metabolites and age. Model 2 was built around 4-hydroxy-3-methoxyphenylglycol sulfate, hexanoylcarnitine, bilirubin, international normalised ratio (INR) and age. In the discovery cohort, both models were more accurate in predicting death within 7, 14 and 28 days after admission compared with MELDNa score (C-index: 0.9267, 0.9002 and 0.8424, and 0.9369, 0.9206 and 0.8529, with model 1 and model 2, respectively). Similar results were found in the validation cohort (C-index: 0.940, 0.834 and 0.791, and 0.947, 0.857 and 0.810, with model 1 and model 2, respectively). Also, in ACLF, model 1 and model 2 outperformed MELDNa 7, 14 and 28 days after admission for prediction of mortality. CONCLUSIONS: Models including metabolites (CLIF-C MET) reflecting SI, mitochondrial dysfunction and sympathetic system activation are better predictors of short-term mortality than scores based only on organ dysfunction (eg, MELDNa), especially in patients with ACLF.


Assuntos
Insuficiência Hepática Crônica Agudizada , Metoxi-Hidroxifenilglicol , Humanos , Prognóstico , Estudos Prospectivos , Cirrose Hepática/complicações , Inflamação/complicações , Metabolômica , Mitocôndrias
11.
J Physiol Biochem ; 79(2): 397-413, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574151

RESUMO

Obesity is a major contributor to the silent and progressive development of type 2 diabetes (T2D) whose prevention could be improved if individuals at risk were identified earlier. Our aim is to identify early phenotypes that precede T2D in diet-induced obese minipigs. We fed four groups of minipigs (n = 5-10) either normal-fat or high-fat high-sugar diet during 2, 4, or 6 months. Morphometric features were recorded, and metabolomics and clinical parameters were assessed on fasting plasma samples. Multivariate statistical analysis on 46 morphometrical and clinical parameters allowed to differentiate 4 distinct phenotypes: NFC (control group) and three others (HF2M, HF4M, HF6M) corresponding to the different stages of the obesity progression. Compared to NFC, we observed a rapid progression of body weight and fat mass (4-, 7-, and tenfold) in obese phenotypes. Insulin resistance (IR; 2.5-fold increase of HOMA-IR) and mild dyslipidemia (1.2- and twofold increase in total cholesterol and HDL) were already present in the HF2M and remained stable in HF4M and HF6M. Plasma metabolome revealed subtle changes of 23 metabolites among the obese groups, including a progressive switch in energy metabolism from amino acids to lipids, and a transient increase in de novo lipogenesis and TCA-related metabolites in HF2M. Low anti-oxidative capacities and anti-inflammatory response metabolites were found in the HF4M, and a perturbed hexose metabolism was observed in HF6M. Overall, we show that IR and progressively obese minipigs reveal phenotype-specific metabolomic signatures for which some of the identified metabolites could be considered as potential biomarkers of early progression to TD2.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Suínos , Insulina/metabolismo , Porco Miniatura/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Metabolômica
12.
Pharmaceutics ; 14(12)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36559146

RESUMO

Selumetinib is administered orally in capsule form and is indicated for the treatment of neurofibromatosis. To facilitate dosage adjustments, liquid preparations, such as solutions or suspensions, are to be developed. This led, first, to determine the stability profile of soluble or dispersed selumetinib and, secondly, to look for ways to stabilize the active substance. The degradation kinetics of selumetinib as a function of stress conditions were determined and compared. The degradation products were detected and identified by LC-HRMSn. In solution, selumetinib is sensitive to oxidation and degrades by photooxidation. In both cases, the side chain represented by the oxoamide group is concerned, leading to the formation of an amide derivative for the first case and an ester derivative for the second. The identification of such degradation mechanisms allowed us to study, in a targeted way, processes aiming at stabilizing the active molecule.

13.
Sci Rep ; 12(1): 18776, 2022 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335235

RESUMO

Sepsis is defined as a dysregulated host response to infection leading to organs failure. Among them, sepsis induces skeletal muscle (SM) alterations that contribute to acquired-weakness in critically ill patients. Proteomics and metabolomics could unravel biological mechanisms in sepsis-related organ dysfunction. Our objective was to characterize a distinctive signature of septic shock in human SM by using an integrative multi-omics approach. Muscle biopsies were obtained as part of a multicenter non-interventional prospective study. Study population included patients in septic shock (S group, with intra-abdominal source of sepsis) and two critically ill control populations: cardiogenic shock (C group) and brain dead (BD group). The proteins and metabolites were extracted and analyzed by High-Performance Liquid Chromatography-coupled to tandem Mass Spectrometry, respectively. Fifty patients were included, 19 for the S group (53% male, 64 ± 17 years, SAPS II 45 ± 14), 12 for the C group (75% male, 63 ± 4 years, SAPS II 43 ± 15), 19 for the BD group (63% male, 58 ± 10 years, SAPS II 58 ± 9). Biopsies were performed in median 3 days [interquartile range 1-4]) after intensive care unit admission. Respectively 31 patients and 40 patients were included in the proteomics and metabolomics analyses of 2264 proteins and 259 annotated metabolites. Enrichment analysis revealed that mitochondrial pathways were significantly decreased in the S group at protein level: oxidative phosphorylation (adjusted p = 0.008); branched chained amino acids degradation (adjusted p = 0.005); citrate cycle (adjusted p = 0.005); ketone body metabolism (adjusted p = 0.003) or fatty acid degradation (adjusted p = 0.008). Metabolic reprogramming was also suggested (i) by the differential abundance of the peroxisome proliferator-activated receptors signaling pathway (adjusted p = 0.007), and (ii) by the accumulation of fatty acids like octanedioic acid dimethyl or hydroxydecanoic. Increased polyamines and depletion of mitochondrial thioredoxin or mitochondrial peroxiredoxin indicated a high level of oxidative stress in the S group. Coordinated alterations in the proteomic and metabolomic profiles reveal a septic shock signature in SM, highlighting a global impairment of mitochondria-related metabolic pathways, the depletion of antioxidant capacities, and a metabolic shift towards lipid accumulation.ClinicalTrial registration: NCT02789995. Date of first registration 03/06/2016.


Assuntos
Sepse , Choque Séptico , Humanos , Masculino , Feminino , Choque Séptico/patologia , Estado Terminal , Estudos Prospectivos , Proteômica , Sepse/genética , Sepse/metabolismo , Músculo Esquelético/metabolismo
14.
Front Oncol ; 12: 958155, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387192

RESUMO

Human TRIAP1 (TP53-regulated inhibitor of apoptosis 1; also known as p53CSV for p53-inducible cell survival factor) is the homolog of yeast Mdm35, a well-known chaperone that interacts with the Ups/PRELI family proteins and participates in the intramitochondrial transfer of lipids for the synthesis of cardiolipin (CL) and phosphatidylethanolamine. Although recent reports indicate that TRIAP1 is a prosurvival factor abnormally overexpressed in various types of cancer, knowledge about its molecular and metabolic function in human cells is still elusive. It is therefore critical to understand the metabolic and proliferative advantages that TRIAP1 expression provides to cancer cells. Here, in a colorectal cancer cell model, we report that the expression of TRIAP1 supports cancer cell proliferation and tumorigenesis. Depletion of TRIAP1 perturbed the mitochondrial ultrastructure, without a major impact on CL levels and mitochondrial activity. TRIAP1 depletion caused extramitochondrial perturbations resulting in changes in the endoplasmic reticulum-dependent lipid homeostasis and induction of a p53-mediated stress response. Furthermore, we observed that TRIAP1 depletion conferred a robust p53-mediated resistance to the metabolic stress caused by glutamine deprivation. These findings highlight the importance of TRIAP1 in tumorigenesis and indicate that the loss of TRIAP1 has extramitochondrial consequences that could impact on the metabolic plasticity of cancer cells and their response to conditions of nutrient deprivation.

15.
Metabolites ; 12(5)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35629918

RESUMO

Meconium represents the first newborn stools, formed from the second month of gestation and excreted in the first days after birth. As an accumulative and inert matrix, it accumulates most of the molecules transferred through the placenta from the mother to the fetus during the last 6 months of pregnancy, and those resulting from the metabolic activities of the fetus. To date, only few studies dealing with meconium metabolomics have been published. In this study, we aimed to provide a comprehensive view of the meconium metabolic composition using 33 samples collected longitudinally from 11 healthy newborns and to analyze its evolution during the first 3 days of life. First, a robust and efficient methodology for metabolite extraction was implemented. Data acquisition was performed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS), using two complementary LC-HRMS conditions. Data preprocessing and treatment were performed using the Workflow4Metabolomics platform and the metabolite annotation was performed using our in-house database by matching accurate masses, retention times, and MS/MS spectra to those of pure standards. We successfully identified up to 229 metabolites at a high confidence level in human meconium, belonging to diverse chemical classes and from different origins. A progressive evolution of the metabolic profile was statistically evidenced, with sugars, amino acids, and some bacteria-derived metabolites being among the most impacted identified compounds. Our implemented analytical workflow allows a unique and comprehensive description of the meconium metabolome, which is related to factors, such as maternal diet and environment.

16.
Leukemia ; 36(6): 1585-1595, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474100

RESUMO

By querying metabolic pathways associated with leukemic stemness and survival in multiple AML datasets, we nominated SLC7A11 encoding the xCT cystine importer as a putative AML dependency. Genetic and chemical inhibition of SLC7A11 impaired the viability and clonogenic capacity of AML cell lines in a cysteine-dependent manner. Sulfasalazine, a broadly available drug with xCT inhibitory activity, had anti-leukemic activity against primary AML samples in ex vivo cultures. Multiple metabolic pathways were impacted upon xCT inhibition, resulting in depletion of glutathione pools in leukemic cells and oxidative stress-dependent cell death, only in part through ferroptosis. Higher expression of cysteine metabolism genes and greater cystine dependency was noted in NPM1-mutated AMLs. Among eight anti-leukemic drugs, the anthracycline daunorubicin was identified as the top synergistic agent in combination with sulfasalazine in vitro. Addition of sulfasalazine at a clinically relevant concentration significantly augmented the anti-leukemic activity of a daunorubicin-cytarabine combination in a panel of 45 primary samples enriched in NPM1-mutated AML. These results were confirmed in vivo in a patient-derived xenograft model. Collectively, our results nominate cystine import as a druggable target in AML and raise the possibility to repurpose sulfasalazine for the treatment of AML, notably in combination with chemotherapy.


Assuntos
Cistina , Leucemia Mieloide Aguda , Linhagem Celular Tumoral , Cisteína , Cistina/metabolismo , Cistina/uso terapêutico , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêutico , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteínas Nucleares , Sulfassalazina/farmacologia , Sulfassalazina/uso terapêutico
17.
J Agric Food Chem ; 70(6): 1878-1889, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35112856

RESUMO

Cocoa is used in the sports world as a supplement, although there is no consensus on its use. We investigated the effect of cocoa intake on intestinal ischemia (intestinal fatty acid-binding protein (I-FABP)), serum lipopolysaccharide (LPS) levels, gastrointestinal symptoms, and gut microbiota in endurance athletes during their training period on an unrestricted diet. We also performed a metabolomics analysis of serum and feces after a bout of exercise before and after supplementation. Cocoa consumption had no effect on I-FABP, LPS, or gastrointestinal symptoms. Cocoa intake significantly increased the abundance of Blautia and Lachnospira genera and decreased the abundance of the Agathobacter genus, which was accompanied by elevated levels of polyphenol fecal metabolites 4-hydroxy-5-(phenyl)-valeric acid and O-methyl-epicatechin-O-glucuronide. Our untargeted approach revealed that cocoa had no significant effects on serum and fecal metabolites and that its consumption had little impact on the metabolome after a bout of physical exercise.


Assuntos
Catequina , Microbioma Gastrointestinal , Proantocianidinas , Atletas , Fezes , Humanos , Masculino , Metaboloma
18.
Anal Bioanal Chem ; 414(2): 759-789, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34432105

RESUMO

Metabolomics refers to the large-scale detection, quantification, and analysis of small molecules (metabolites) in biological media. Although metabolomics, alone or combined with other omics data, has already demonstrated its relevance for patient stratification in the frame of research projects and clinical studies, much remains to be done to move this approach to the clinical practice. This is especially true in the perspective of being applied to personalized/precision medicine, which aims at stratifying patients according to their risk of developing diseases, and tailoring medical treatments of patients according to individual characteristics in order to improve their efficacy and limit their toxicity. In this review article, we discuss the main challenges linked to analytical chemistry that need to be addressed to foster the implementation of metabolomics in the clinics and the use of the data produced by this approach in personalized medicine. First of all, there are already well-known issues related to untargeted metabolomics workflows at the levels of data production (lack of standardization), metabolite identification (small proportion of annotated features and identified metabolites), and data processing (from automatic detection of features to multi-omic data integration) that hamper the inter-operability and reusability of metabolomics data. Furthermore, the outputs of metabolomics workflows are complex molecular signatures of few tens of metabolites, often with small abundance variations, and obtained with expensive laboratory equipment. It is thus necessary to simplify these molecular signatures so that they can be produced and used in the field. This last point, which is still poorly addressed by the metabolomics community, may be crucial in a near future with the increased availability of molecular signatures of medical relevance and the increased societal demand for participatory medicine.


Assuntos
Metabolômica/métodos , Testes Imediatos , Medicina de Precisão , Biomarcadores/metabolismo , Química Analítica , Humanos
19.
Anal Biochem ; 636: 114477, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808106

RESUMO

Metabolomics refers to the study of biological components below 1000 Daltons (Da) involved in metabolic pathways as substrates, products or effectors. According to the interconnected metabolic disturbances that have been described in the pathophysiology of hepatic encephalopathy (HE), this technique appears to be well adapted to study and better delineate the disease. This review will focus on recent advances in metabolomics in the field of HE. Thus, after a brief overview of the general principles of metabolomics, we will discuss metabolomics as a potentially efficient tool for unraveling new HE pathophysiological insights, biomarkers identification, or as a predicting tool for treatment response or outcome prognosis. Finally, we will give our vision on the prospects offered by metabolomics for improving care of HE patients.


Assuntos
Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/terapia , Redes e Vias Metabólicas , Metabolômica , Biomarcadores/metabolismo , Humanos , Prognóstico
20.
Sci Data ; 8(1): 311, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862403

RESUMO

Genes are pleiotropic and getting a better knowledge of their function requires a comprehensive characterization of their mutants. Here, we generated multi-level data combining phenomic, proteomic and metabolomic acquisitions from plasma and liver tissues of two C57BL/6 N mouse models lacking the Lat (linker for activation of T cells) and the Mx2 (MX dynamin-like GTPase 2) genes, respectively. Our dataset consists of 9 assays (1 preclinical, 2 proteomics and 6 metabolomics) generated with a fully non-targeted and standardized approach. The data and processing code are publicly available in the ProMetIS R package to ensure accessibility, interoperability, and reusability. The dataset thus provides unique molecular information about the physiological role of the Lat and Mx2 genes. Furthermore, the protocols described herein can be easily extended to a larger number of individuals and tissues. Finally, this resource will be of great interest to develop new bioinformatic and biostatistic methods for multi-omics data integration.


Assuntos
Modelos Animais de Doenças , Metabolômica , Proteômica , Proteínas Adaptadoras de Transdução de Sinal , Animais , Feminino , Fígado , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Resistência a Myxovirus , Fenótipo , Plasma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...