Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 352: 199-210, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36084816

RESUMO

Liposomes are promising targeted drug delivery systems with the potential to improve the efficacy and safety profile of certain classes of drugs. Though attractive, there are unique analytical challenges associated with the development of liposomal drugs including human dose prediction given these are multi-component drug delivery systems. In this study, we developed a multimodal imaging approach to provide a comprehensive distribution assessment for an antibacterial drug, GSK2485680, delivered as a liposomal formulation (Lipo680) in a mouse thigh model of bacterial infection to support human dose prediction. Positron emission tomography (PET) imaging was used to track the in vivo biodistribution of Lipo680 over 48 h post-injection providing a clear assessment of the uptake in various tissues and, importantly, the selective accumulation at the site of infection. In addition, a pharmacokinetic model was created to evaluate the kinetics of Lipo680 in different tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) was then used to quantify the distribution of GSK2485680 and to qualitatively assess the distribution of a liposomal lipid throughout sections of infected and non-infected hindlimb tissues at high spatial resolution. Through the combination of both PET and MALDI IMS, we observed excellent correlation between the Lipo680-radionuclide signal detected by PET with the GSK2485680 and lipid component signals detected by MALDI IMS. This multimodal translational method can reduce drug attrition by generating comprehensive biodistribution profiles of drug delivery systems to provide mechanistic insight and elucidate safety concerns. Liposomal formulations have potential to deliver therapeutics across a broad array of different indications, and this work serves as a template to aid in delivering future liposomal drugs to the clinic.


Assuntos
Doenças Transmissíveis , Lipossomos , Animais , Camundongos , Humanos , Lipossomos/química , Distribuição Tecidual , Antibacterianos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Tomografia por Emissão de Pósitrons , Imagem Multimodal , Lipídeos
2.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35455408

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a technology that utilizes the high sensitivity and specificity of mass spectrometry, combined with a high spatial resolution to characterize the molecular species present in skin tissue. In this article, we use MALDI IMS to map specific lipids characteristic of two important skin appendages in minipig skin: the sebaceous glands and hair follicles. A set of specific lipid markers linked to the synthesis of sebum, stages of sebum production, and the secretion of sebum for two different sebaceous gland subzones, the peripheral and central necrotic, were identified. Furthermore, biochemical pathway analysis of the identified markers provides potential drug-targeting strategies to reduce sebum overproduction in pathological conditions. In addition, specific lipid markers characteristic of the different layers in the hair follicle bulge area, including the outer root sheath, the inner root sheath, and the medulla that are associated with the growth cycles of the hair, were determined. This research highlights the ability of MALDI IMS to link a molecular distribution not only to the morphological features in skin tissue but to the physiological state as well. Thus, this platform can provide a basis for the investigation of biochemical pathways as well as the mechanisms of disease and pharmacology in the skin, which will ultimately be critical for drug discovery and the development of dermatology-related illnesses.

3.
Front Immunol ; 13: 797460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197973

RESUMO

Our group has recently developed the GlycoTyper assay which is a streamlined antibody capture slide array approach to directly profile N-glycans of captured serum glycoproteins including immunoglobulin G (IgG). This method needs only a few microliters of serum and utilizes a simplified processing protocol that requires no purification or sugar modifications prior to analysis. In this method, antibody captured glycoproteins are treated with peptide N-glycosidase F (PNGase F) to release N-glycans for detection by MALDI imaging mass spectrometry (IMS). As alterations in N-linked glycans have been reported for IgG from large patient cohorts with fibrosis and cirrhosis, we utilized this novel method to examine the glycosylation of total IgG, as well as IgG1, IgG2, IgG3 and IgG4, which have never been examined before, in a cohort of 106 patients with biopsy confirmed liver fibrosis. Patients were classified as either having no evidence of fibrosis (41 patients with no liver disease or stage 0 fibrosis), early stage fibrosis (10 METAVIR stage 1 and 18 METAVIR stage 2) or late stage fibrosis (6 patients with METAVIR stage 3 fibrosis and 37 patients with METAVIR stage 4 fibrosis (cirrhosis)). Several major alterations in glycosylation were observed that classify patients as having no fibrosis (sensitivity of 92% and a specificity of 90%), early fibrosis (sensitivity of 84% with 90% specificity) or significant fibrosis (sensitivity of 94% with 90% specificity).


Assuntos
Imunoglobulina G/imunologia , Biomarcadores , Feminino , Glicoproteínas/metabolismo , Glicosilação , Humanos , Cirrose Hepática , Masculino , Pessoa de Meia-Idade , Polissacarídeos/sangue , Projetos de Pesquisa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
4.
J Mass Spectrom ; 56(8): e4717, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33724654

RESUMO

The pharmaceutical industry is a dynamic, science-driven business constantly under pressure to innovate and morph into a higher performing organization. Innovations can include the implementation of new technologies, adopting new scientific methods, changing the decision-making process, compressing timelines, or making changes to the organizational structure. The drivers for the constant focus on performance improvement are the high cost of R&D as well as the lengthy timelines required to deliver new medicines for unmet needs. Successful innovations are measured against both the quality and quantity of potential new medicines in the pipeline and the delivery to patients. In this special feature article, we share our collective experience implementing matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) technology as an innovative approach to better understand the tissue biodistribution of drugs in the early phases of drug discovery to establish pharmacokinetic-pharmacodynamic (PK-PD) relationships, as well as in the development phase to understand pharmacology, toxicology, and disease pathogenesis. In our experience, successful implementation of MALDI IMS in support of therapeutic programs can be measured by the impact IMS studies have on driving decision making in pipeline progression. This provides a direct quantifiable measurement of the return to the organization for the investment in IMS. We have included discussion not only on the technical merits of IMS study conduct but also the key elements of setting study objectives, building collaborations, data integration into the medicine progression milestones, and potential pitfalls when trying to establish IMS in the pharmaceutical arena. We categorized IMS study types into five groups that parallel pipeline progression from the earliest phases of discovery to late stages of preclinical development. We conclude the article with some perspectives on how we see MALDI IMS maintaining relevance and becoming further embedded as an essential tool in the constantly changing environment of the pharmaceutical industry.


Assuntos
Tomada de Decisões , Descoberta de Drogas , Espectrometria de Massas , Humanos , Farmacocinética , Distribuição Tecidual
5.
J Mass Spectrom ; 55(4): e4507, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32267584
6.
Bioanalysis ; 11(11): 1099-1116, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31251106

RESUMO

Aim: A revised method of preparing the mimetic tissue model for quantitative imaging mass spectrometry (IMS) is evaluated. Concepts of assessing detection capability are adapted from other imaging or mass spectrometry (MS)-based technologies to improve upon the reliability of IMS quantification. Materials & methods: The mimetic tissue model is prepared by serially freezing spiked-tissue homogenates into a cylindrical mold to create a plug of tissue with a stepped concentration gradient of matrix-matched standards. Weighted least squares (WLS) linear regression is applied due to the heteroscedastisity (change in variance with intensity) of most MS data. Results & conclusions: Imaging poses several caveats for quantification which are unique compared with other MS-based methods. Aspects of the design, construction, application, and evaluation of the matrix-matched standard curve for the mimetic tissue model are discussed. In addition, the criticality of the ion distribution in the design of a purposeful liquid chromatography coupled to mass spectrometry (LC-MS) validation is reviewed.


Assuntos
Clorpropamida/análogos & derivados , Clozapina/análise , Fígado/química , Modelos Biológicos , Nucleosídeos/análise , Pele/química , Animais , Encéfalo , Clorpropamida/análise , Masculino , Espectrometria de Massas , Ratos , Ratos Wistar , Suínos
7.
Anal Chem ; 91(9): 6266-6274, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30938516

RESUMO

The aim of this study was to assess potential sources of variability in quantitative imaging mass spectrometry (IMS) across multiple sites, analysts, and instruments. A sample from rat liver perfused with clozapine was distributed to three sites for analysis by three analysts using a predefined protocol to standardize the sample preparation, acquisition, and data analysis parameters. In addition, two commonly used approaches to IMS quantification, the mimetic tissue model and dilution series, were used to quantify clozapine and its major metabolite norclozapine in isolated perfused rat liver. The quantification was evaluated in terms of precision and accuracy with comparison to liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The results of this study showed that, across three analysts with six replicates each, both quantitative IMS methods achieved relative standard deviations in the low teens and accuracies of around 80% compared to LC-MS/MS quantification of adjacent tissue sections. The utility of a homogeneously coated stable-isotopically labeled standard (SIL) for normalization was appraised in terms of its potential to improve precision and accuracy of quantification as well as qualitatively reduce variability in the sample tissue images. SIL normalization had a larger influence on the dilution series, where the use of the internal standard was necessary to achieve accuracy and precision comparable to the non-normalized mimetic tissue model data. Normalization to the internal standard appeared most effective when the intensity ratio of the analyte to internal standard was approximately one, and thus precludes this method as a universal normalization approach for all ions in the acquisition.


Assuntos
Clozapina/análise , Fígado/química , Animais , Cromatografia Líquida , Clozapina/administração & dosagem , Clozapina/metabolismo , Marcação por Isótopo , Fígado/metabolismo , Masculino , Modelos Animais , Estrutura Molecular , Ratos , Ratos Wistar , Espectrometria de Massas em Tandem
9.
Chem Res Toxicol ; 32(2): 294-303, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30638013

RESUMO

Retigabine (RTG) is an antiepileptic drug approved as an adjunctive treatment for refractory partial-onset seizures in adults. In April 2013, the Food and Drug Administration issued a warning that RTG could cause changes in retinal pigmentation and discoloration of skin, resulting in a blue appearance. As part of a larger preclinical effort to gain a mechanistic understanding as to the origins of retinal pigment changes associated with RTG, we conducted a long-term repeat dosing study in rats. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) was used to determine the distribution of RTG and its metabolites in the rat eye following 13 and 39 weeks of dosing. IMS revealed the presence of RTG, a previously characterized N-acetyl metabolite of RTG (NAMR), and several species structurally related through the dimerization of RTG and NAMR. These species were highly localized to the melanin-containing layers of the uveal tract of the rat eye including the choroid, ciliary body, and iris, suggesting that the formation of these dimers occurs from melanin bound RTG and NAMR. Furthermore, several of the RTG-related dimers have UV absorbance which give them a purple color in solution. We propose that the melanin binding of RTG and NAMR effectively concentrates the two compounds to enable mixed condensation reactions to occur when the binding provides the proper geometry in the redox environment of the uveal tissues. High lateral resolution images illustrate that the blood-retinal barrier effectively restricts retinal access to RTG-related compounds. The spatial information provided by MALDI IMS was critical in contextualizing the homogenate concentrations of key RTG-related compounds and helped provide a basis for the mechanism of dimer formation.


Assuntos
Carbamatos/metabolismo , Fenilenodiaminas/metabolismo , Pigmentos da Retina/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Úvea/efeitos dos fármacos , Animais , Carbamatos/farmacologia , Dimerização , Masculino , Melaninas/química , Melaninas/metabolismo , Fenilenodiaminas/farmacologia , Ratos , Ratos Long-Evans , Úvea/metabolismo , Úvea/patologia
10.
J Control Release ; 268: 102-112, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29042321

RESUMO

Long-Acting Parenterals (LAPs) have been used in the clinic to provide sustained therapeutic drug levels at a target site, and thereby reducing the frequency of dosing required. In an effort to understand the factors associated with long-acting cabotegravir (GSK1265744 LAP) pharmacokinetic variability, the current study was designed to investigate the temporal relationship between intramuscular (IM) or subcutaneous (SC) drug depot morphology and distribution kinetics with plasma pharmacokinetics. Therefore, a multi-modal molecular imaging (MRI & MALDI IMS) approach was employed to examine the temporal GSK1265744 LAP biodistribution in rat following either IM or SC administration. Serial MRI was performed immediately post drug administration, and then at day 1 (24h post), 2, 3, 4, 7, and 14. In a separate cohort of rats, an MRI contrast agent, Feraheme® (USPIO), was administered 2days post IM drug injection in order to investigate the potential involvement of macrophages trafficking to the GSK1265744 LAP and Vehicle depot sites. The GSK1265744 LAP depot volume increased rapidly by day 2 in the IM injected rats (~3-7 fold) compared with a ~1 fold increase in the SC injected rats. In addition, the USPIO contrast agent labeled macrophages were shown to be present in the depot region of the GSK1265744 LAP injected gastrocnemius while the Vehicle injected gastrocnemius appeared to show reduced uptake. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) of muscle and abdominal tissue sections identified the drug content primarily within the depot. Co-registration of the GSK1265744 ion images with immunohistochemical images established that the drug was taken up by macrophages associated with the depot. Linear regression analysis demonstrated that the drug depot characteristics including volume, surface area, and perimeter assessed by MRI at day 2 correlated with early time point plasma drug concentrations. In summary, a multimodal molecular imaging approach was used to identify the drug depot location and volumetric/physiologic changes in both IM and SC locations following GSK1265744 LAP administration. The IM depot volume increased rapidly to a maximum volume at 2days post-GSK1265744 LAP administration, while the Vehicle depot did not suggesting that the active drug substance and/or related particle was a key driver for drug depot evolution. The depot expansion was associated with an increase in macrophage infiltration and edema in and around the depot region and was correlated to plasma drug concentration at early time points (0-4days). Consequently, molecular imaging approaches may be used in patients to help understand the biodistribution of GSK1265744 LAP and its associated pharmacokinetics.


Assuntos
Piridonas/administração & dosagem , Piridonas/farmacocinética , Animais , Meios de Contraste/administração & dosagem , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Óxido Ferroso-Férrico/administração & dosagem , Injeções Intramusculares , Injeções Subcutâneas , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Piridonas/sangue , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição Tecidual
11.
Clin Cancer Res ; 23(15): 4323-4334, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381415

RESUMO

Purpose: Dual blockade of HER2 with trastuzumab and lapatinib or pertuzumab has been shown to be superior to single-agent trastuzumab. However, a significant fraction of HER2-overexpressing (HER2+) breast cancers escape from these drug combinations. In this study, we sought to discover the mechanisms of acquired resistance to the combination of lapatinib + trastuzumab.Experimental Design: HER2+ BT474 xenografts were treated with lapatinib + trastuzumab long-term until resistance developed. Potential mechanisms of acquired resistance were evaluated in lapatinib + trastuzumab-resistant (LTR) tumors by targeted capture next-generation sequencing. In vitro experiments were performed to corroborate these findings, and a novel drug combination was tested against LTR xenografts. Gene expression and copy-number analyses were performed to corroborate our findings in clinical samples.Results: LTR tumors exhibited an increase in FGF3/4/19 copy number, together with an increase in FGFR phosphorylation, marked stromal changes in the tumor microenvironment, and reduced tumor uptake of lapatinib. Stimulation of BT474 cells with FGF4 promoted resistance to lapatinib + trastuzumab in vitro Treatment with FGFR tyrosine kinase inhibitors reversed these changes and overcame resistance to lapatinib + trastuzumab. High expression of FGFR1 correlated with a statistically shorter progression-free survival in patients with HER2+ early breast cancer treated with adjuvant trastuzumab. Finally, FGFR1 and/or FGF3 gene amplification correlated with a lower pathologic complete response in patients with HER2+ early breast cancer treated with neoadjuvant anti-HER2 therapy.Conclusions: Amplification of FGFR signaling promotes resistance to HER2 inhibition, which can be diminished by the combination of HER2 and FGFR inhibitors. Clin Cancer Res; 23(15); 4323-34. ©2017 AACR.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fator 3 de Crescimento de Fibroblastos/genética , Receptor ErbB-2/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Fator 3 de Crescimento de Fibroblastos/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lapatinib , Camundongos , Terapia Neoadjuvante/efeitos adversos , Inibidores de Proteínas Quinases/administração & dosagem , Quinazolinas/administração & dosagem , Receptor ErbB-2/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Trastuzumab/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Toxicol Pathol ; 44(1): 112-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26733602

RESUMO

Nevirapine (NVP) is associated with hepatotoxicity in 1-5% of patients. In rodent studies, NVP has been shown to cause hepatic enzyme induction, centrilobular hypertrophy, and skin rash in various rat strains but not liver toxicity. In an effort to understand whether NVP is metabolized differently in a transiently inflamed liver and whether a heightened immune response alters NVP-induced hepatic responses, female brown Norway rats were dosed with either vehicle or NVP alone (75 mg/kg/day for 15 days) or galactosamine alone (single intraperitoneal [ip] injection on day 7 to mimic viral hepatitis) or a combination of NVP (75/100/150 mg/kg/day for 15 days) and galactosamine (single 750 mg/kg ip on day 7). Livers were collected at necropsy for histopathology, matrix-assisted laser desorption/ionization imaging mass spectrometry and gene expression. Eight days after galactosamine, hepatic fibrosis was noted in rats dosed with the combination of NVP and galactosamine. No fibrosis occurred with NVP alone or galactosamine alone. Gene expression data suggested a viral-like response initiated by galactosamine via RNA sensors leading to apoptosis, toll-like receptor, and dendritic cell responses. These were exacerbated by NVP-induced growth factor, retinol, apoptosis, and periostin effects. This finding supports clinical reports warning against exacerbation of fibrosis by NVP in patients with hepatitis C.


Assuntos
Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Fígado/patologia , Nevirapina/toxicidade , Animais , Antivirais/toxicidade , Feminino , Galactosamina/toxicidade , Perfilação da Expressão Gênica , Histocitoquímica , Fígado/virologia , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
J Am Assoc Lab Anim Sci ; 54(6): 799-802, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26632791

RESUMO

During the acclimation phase of a preclinical safety study involving Syrian golden hamsters, some of the cages of treatment-naïve animals were noted to contain blue-tinged bedding; the urine of these hamsters was not discolored. We sought to understand the underlying cause of this unusual finding to ensure that the study animals were healthy and free from factors that might confound the interpretation of the study. Analysis of extracts from the blue bedding by using HPLC with inline UV detection and high-resolution mass spectrometry indicated that the color was due to the presence of indigo blue. Furthermore, the indigo blue likely was formed through a series of biochemical events initiated by the intestinal metabolism of tryptophan to an indoxyl metabolite. We offer 2 hypotheses regarding the fate of the indoxyl metabolite: indigo blue formation through oxidative coupling in the liver or through urinary bacterial metabolism.


Assuntos
Roupas de Cama, Mesa e Banho/veterinária , Abrigo para Animais , Mesocricetus , Ração Animal/análise , Animais , Animais de Laboratório , Cromatografia Líquida de Alta Pressão , Feminino , Índigo Carmim/metabolismo , Indóis/metabolismo , Fígado/metabolismo , Masculino , Urina/química , Urina/microbiologia
14.
Int J Mass Spectrom ; 377: 448-155, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26056514

RESUMO

Determining the distribution of a drug and its metabolites within tissue is a key facet of evaluating drug candidates. Drug distribution can have a significant implication in appraising drug efficacy and potential toxicity. The specificity and sensitivity of mass spectrometry imaging (MSI) make it a perfect complement to the analysis of drug distributions in tissue. The detection of lapatinib as well as several of its metabolites in liver tissue was determined by MSI using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) coupled to high resolving power Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers. IR-MALDESI required minimal sample preparation while maintaining high sensitivity. The effect of the electrospray solvent composition on IR-MALDESI MSI signal from tissue analysis was investigated and an empirical comparison of IR-MALDESI and UV-MALDI for MSI analysis is also presented.

15.
J Am Soc Mass Spectrom ; 26(6): 887-98, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25804893

RESUMO

As part of an investigative nephrotoxicity study, kidney tissues from juvenile rats orally administered dabrafenib at different age intervals between postnatal day (PND) 7 to 35 were investigated by MALDI and LDI imaging mass spectrometry (IMS) to determine the chemical composition of tubular deposits. In the youngest age group (PND 7-13), MALDI IMS demonstrated that a dabrafenib carboxylic acid metabolite was diffusely localized to the regions of tubular deposits (medulla and corticomedullary junction); however, no dabrafenib-related material was detected directly from the deposits. Rather, the LDI IMS analysis determined that the deposits were composed primarily of calcium phosphate. Based on these data, the dabrafenib associated nephrotoxicity, including the formation of tubular deposits, was determined to be age dependent. Furthermore, immature renal function was hypothesized to be responsible for the susceptibility of the youngest pups.

16.
J Appl Toxicol ; 34(11): 1122-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25132005

RESUMO

Cardiolipin (CL) is crucial for mitochondrial energy metabolism and structural integrity. Alterations in CL quantity or CL species have been associated with mitochondrial dysfunction in several pathological conditions and diseases, including mitochondrial dysfunction-related compound attrition and post-market withdrawal of promising drugs. Here we report alterations in the CL profiles in conjunction with morphology of soleus muscle (SM) and brown adipose tissue (BAT) in diet-induced obese (DIO) mice, subjected to ephedrine treatment (EPH: 200 mg kg(-1) day(-1) orally), treadmill exercise (EX: 10 meters per min, 1 h per day), or dietary restriction (DR: 25% less of mean food consumed by the EX group) for 7 days. Mice from the DR and EPH groups had a significant decrease in percent body weight and reduced fat mass compared with DIO controls. Morphologic alterations in the BAT included brown adipocytes with reduced cytoplasmic lipid droplets and increased cytoplasmic eosinophilia in the EX, DR and EPH groups. Increased cytoplasmic eosinophilia in the BAT was ultrastructurally manifested by increased mitochondrial cristae, fenestration of mitochondrial cristae, increased electron density of mitochondrial matrix, and increased complexity of shape and elongation of mitochondria. Mitochondrial ultrastructural alterations in the SM of the EX and DR groups included increased mitochondrial cristae, cup-shaped mitochondria and mitochondrial degeneration. All four CL species (tri-linoleoyl-mono-docosahexaenoyl, tetralinoleoyl, tri-linoleoyl-mono-oleoyl, and di-linoleoyl-di-oleoyl) were increased in the BAT of the DR and EPH groups and in the SM of the EPH and EX groups. In conclusion, cardiolipin profiling supported standard methods for assessing mitochondrial biogenesis and health, and may serve as a potential marker of mitochondrial dysfunction in preclinical toxicity studies.


Assuntos
Biomarcadores/metabolismo , Cardiolipinas/metabolismo , Efedrina/farmacologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Restrição Calórica , Cromatografia Líquida , Dieta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Obesidade/tratamento farmacológico , Condicionamento Físico Animal , Espectrometria de Massas em Tandem
17.
Eur J Clin Pharmacol ; 70(10): 1173-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25146692

RESUMO

PURPOSE: Dolutegravir (DTG) is an unboosted, integrase inhibitor for the treatment of HIV infection. Two studies evaluated the effects of efavirenz (EFV) and tipranavir/ritonavir (TPV/r) on DTG pharmacokinetics (PK) in healthy subjects. METHODS: The first study was an open-label crossover where 12 subjects received DTG 50 mg every 24 hours (q24h) for 5 days, followed by DTG 50 mg and EFV 600 mg q24h for 14 days. The second study was an open-label crossover where 18 subjects received DTG 50 mg q24h for 5 days followed by TPV/r 500/200 mg every 12 hours (q12h) for 7 days and then DTG 50 mg q24h and TPV/r 500/200 mg q12h for a further 5 days. Safety assessments and serial PK samples were collected. Non-compartmental PK analysis and geometric mean ratios and 90% confidence intervals were generated. RESULTS: The combination of DTG with EFV or TPV/r was generally well tolerated. Four subjects discontinued the TPV/r study due to increases in alanine aminotransferase that were considered related to TPV/r. Co-administration with EFV resulted in decreases of 57, 39 and 75% in DTG AUC(0-τ), Cmax and Cτ, respectively. Co-administration with TPV/r resulted in decreases of 59, 46 and 76% in DTG AUC(0-τ), Cmax and Cτ, respectively. CONCLUSIONS: Given the reductions in exposure and PK/pharmacodynamic relationships in phase II/III trials, DTG should be given at an increased dose of 50 mg twice daily when co-administered with EFV or TPV/r, and alternative regimens without inducers should be considered in integrase inhibitor-resistant patients.


Assuntos
Benzoxazinas/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Piridinas/farmacologia , Pironas/farmacologia , Ritonavir/farmacologia , Adulto , Idoso , Alcinos , Fármacos Anti-HIV/administração & dosagem , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Área Sob a Curva , Benzoxazinas/efeitos adversos , Estudos Cross-Over , Ciclopropanos , Combinação de Medicamentos , Interações Medicamentosas , Feminino , Inibidores de Integrase de HIV/efeitos adversos , Inibidores de Integrase de HIV/farmacocinética , Compostos Heterocíclicos com 3 Anéis/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Oxazinas , Piperazinas , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Piridonas , Pironas/administração & dosagem , Pironas/efeitos adversos , Ritonavir/administração & dosagem , Ritonavir/efeitos adversos , Sulfonamidas , Adulto Jovem
18.
Anal Chem ; 85(21): 10099-106, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24024735

RESUMO

The full potential of imaging mass spectrometry (IMS) as a tool in drug development will not be realized until reliable quantitative information can be integrated with the molecular distributions. Here we report a novel method for the quantification of drugs in tissue sections using matrix-assisted laser desorption/ionization (MALDI) IMS. This method uses a mimetic tissue model consisting of a set of tissue homogenates spiked with a range of different drug concentrations that have been frozen into a polymer support mold. The goal of this model is to mimic a dosed tissue in its effects on analyte extraction and ion suppression. Parallel preparation and analysis of sections from the tissue model and the dosed tissues allow for the quantification of a drug's distribution. Here we detail the steps involved in constructing the model and provide proof of concept data to highlight the potential of this approach. Several figures of merit are evaluated including linearity of response, variability, and section-to-section reproducibility. Finally, the tissue model is used to quantify two different drugs, lapatinib and nevirapine, in dosed tissues from nonclinical species and the results are compared with those generated by LC-MS quantification.


Assuntos
Modelos Teóricos , Preparações Farmacêuticas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Feminino , Camundongos , Ratos
19.
Antimicrob Agents Chemother ; 57(8): 3536-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23669385

RESUMO

The pharmacokinetics, metabolism, and excretion of dolutegravir, an unboosted, once-daily human immunodeficiency virus type 1 integrase inhibitor, were studied in healthy male subjects following single oral administration of [(14)C]dolutegravir at a dose of 20 mg (80 µCi). Dolutegravir was well tolerated, and absorption of dolutegravir from the suspension formulation was rapid (median time to peak concentration, 0.5 h), declining in a biphasic fashion. Dolutegravir and the radioactivity had similar terminal plasma half-lives (t1/2) (15.6 versus 15.7 h), indicating metabolism was formation rate limited with no long-lived metabolites. Only minimal association with blood cellular components was noted with systemic radioactivity. Recovery was essentially complete (mean, 95.6%), with 64.0% and 31.6% of the dose recovered in feces and urine, respectively. Unchanged dolutegravir was the predominant circulating radioactive component in plasma and was consistent with minimal presystemic clearance. Dolutegravir was extensively metabolized. An inactive ether glucuronide, formed primarily via UGT1A1, was the principal biotransformation product at 18.9% of the dose excreted in urine and the principal metabolite in plasma. Two minor biotransformation pathways were oxidation by CYP3A4 (7.9% of the dose) and an oxidative defluorination and glutathione substitution (1.8% of the dose). No disproportionate human metabolites were observed.


Assuntos
Glucuronídeos/urina , Inibidores de Integrase de HIV/farmacocinética , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Adulto , Citocromo P-450 CYP3A/metabolismo , Tolerância a Medicamentos , Fezes/química , Glucuronídeos/sangue , Glucuronosiltransferase/metabolismo , Inibidores de Integrase de HIV/administração & dosagem , Inibidores de Integrase de HIV/metabolismo , Halogenação , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/metabolismo , Humanos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Oxazinas , Oxirredução , Piperazinas , Piridonas
20.
Chem Res Toxicol ; 26(2): 241-51, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23227887

RESUMO

The CNS disposition and metabolism of Fosdevirine (FDV), an HIV non-nucleoside reverse transcriptase inhibitor, was investigated in four patients who unexpectedly experienced seizures after at least 4 weeks of treatment in a Phase IIb, HIV-1 treatment experienced study. In addition, the CNS disposition and metabolism of FDV was examined in samples from rabbit, minipig, and monkey studies. LC-MS was used to characterize and estimate the concentrations of FDV and its metabolites in cerebral spinal fluid (seizure patients, rabbit, and monkey) and brain homogenate (rabbit, minipig, and monkey). The application of matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) provided the spatial distribution of FDV and its metabolites in brain tissue (rabbit, minipig, and monkey). A cysteine conjugate metabolite resulting from an initial glutathione (GSH) Michael addition to the trans-phenyl acrylonitrile moiety of FDV was the predominant drug-related component in the samples from seizure patients, rabbits, and minipigs. This metabolite persisted in the CNS for an extended period of time after the last dose in both seizure patients and minipigs. Furthermore, the localization of this metabolite was found to be highly associated with the white matter in rabbit and minipig brain sections by MALDI IMS. In contrast, the predominant component in monkey CNS was FDV, which was shown to be highly associated with the gray matter. On the basis of these data, several hypothesizes are considered, which might provide insights into species differences in CNS toxicity/seizures observed after FDV dosing.


Assuntos
Sistema Nervoso Central/metabolismo , Indóis/metabolismo , Indóis/farmacocinética , Ácidos Fosfínicos/metabolismo , Ácidos Fosfínicos/farmacocinética , Inibidores da Transcriptase Reversa/metabolismo , Inibidores da Transcriptase Reversa/farmacocinética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Cromatografia Líquida/métodos , Feminino , Haplorrinos , Humanos , Indóis/toxicidade , Masculino , Ácidos Fosfínicos/toxicidade , Coelhos , Inibidores da Transcriptase Reversa/toxicidade , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...