Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Cell Cycle ; 11(21): 3972-82, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23047602

RESUMO

Here, we identified the milk protein α-casein as a novel suppressor of tumor growth and metastasis. Briefly, Met-1 mammary tumor cells expressing α-casein showed a ~5-fold reduction in tumor growth and a near 10-fold decrease in experimental metastasis. To identify the molecular mechanism(s), we performed genome-wide transcriptional profiling. Interestingly, our results show that α-casein upregulates gene transcripts associated with interferon/STAT1 signaling and downregulates genes associated with "stemness." These findings were validated by immunoblot and FACS analysis, which showed the upregulation and hyperactivation of STAT1 and a decrease in the number of CD44(+) "cancer stem cells." These gene signatures were also able to predict clinical outcome in human breast cancer patients. Thus, we conclude that a lactation-based therapeutic strategy using recombinant α-casein would provide a more natural and non-toxic approach to the development of novel anticancer therapies.


Assuntos
Caseínas/farmacologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/prevenção & controle , Caseínas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Interferons/metabolismo , Camundongos , Leite Humano , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT1/genética , Regulação para Cima
4.
PLoS One ; 7(10): e47717, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077663

RESUMO

BACKGROUND: Deregulated miRNA expression plays a crucial role in carcinogenesis. Recent studies show different mechanisms leading to miRNA deregulation in cancer; however, alterations affecting miRNAs by DNA copy number variations (CNV) remain poorly studied. RESULTS: Our integrative analysis including data from high resolution SNPs arrays, mRNA expression arrays, and miRNAs expression profiles in 16 myeloid cell lines highlights that CNV are alternative mechanisms to deregulate the expression of miRNAs in acute myeloid leukemia (AML), and represent a novel approach to identify novel candidate genes involved in AML. We found association between the expression levels of 19 miRNAs and CNVs affecting their loci. Functional analysis showed that NF1 is a direct target of miR-370, and that overexpression of miR-370 has similar effects that NF1 inactivation, increasing proliferation and colony formation in AML cells. Moreover, real time RT-PCR showed that NF1 downregulation is a recurrent event in AML (30.8%), and western blot analysis confirmed this result. MiR-370 overexpression and deletions affecting the NF1 locus were identified as alternative mechanisms to downregulate NF1. CONCLUSIONS: NF1 downregulation is a common event in AML, and both deletions in the NF1 locus and overexpression of miR-370 are alternative mechanisms to downregulate NF1 in this disease. Our results suggest a leukemogenic role of miR-370 through NF1 downregulation in AML cells. Since NF1 deficiency leads to RAS activation, patients with AML and overexpression of miR-370 may potentially benefit from additional treatment with either RAS or mTOR inhibitors.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Neurofibromina 1 , RNA Mensageiro , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/metabolismo
5.
Cancer Res ; 72(9): 2262-74, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22396494

RESUMO

Both cell-autonomous and non-cell-autonomous factors contribute to tumor growth and metastasis of melanoma. The function of caveolin-1 (Cav1), a multifunctional scaffold protein known to modulate several biologic processes in both normal tissue and cancer, has been recently investigated in melanoma cancer cells, but its role in the melanoma microenvironment remains largely unexplored. Here, we show that orthotopic implantation of B16F10 melanoma cells in the skin of Cav1KO mice increases tumor growth, and co-injection of Cav1-deficient dermal fibroblasts with melanoma cells is sufficient to recapitulate the tumor phenotype observed in Cav1KO mice. Using indirect coculture experiments with fibroblasts and melanoma cells combined with cytokine analysis, we found that Cav1-deficient fibroblasts promoted the growth of melanoma cells via enhanced paracrine cytokine signaling. Specifically, Cav1-deficient fibroblasts displayed increased ShhN expression, which heterotypically enhanced the Shh signaling pathway in melanoma cells. In contrast to primary tumor growth, the ability of B16F10 melanoma cells to form lung metastases was significantly reduced in Cav1KO mice. This phenotype was associated mechanistically with the inability of melanoma cells to adhere to and to transmigrate through a monolayer of endothelial cells lacking Cav1. Together, our findings show that Cav1 may regulate different mechanisms during primary melanoma tumor growth and metastatic dissemination.


Assuntos
Caveolina 1/deficiência , Movimento Celular/genética , Proteínas Hedgehog/metabolismo , Melanoma Experimental/patologia , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/deficiência , Caveolina 2/metabolismo , Processos de Crescimento Celular/genética , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Metástase Neoplásica
6.
Cell Cycle ; 10(13): 2140-50, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21670602

RESUMO

Caveolin-1 (Cav-1), the principal structural component of caveolae, participates in the pathogenesis of several fibrotic diseases, including systemic sclerosis (SSc). Interestingly, affected skin and lung samples from patients with SSc show reduced levels of Cav-1, as compared to normal skin. In addition, restoration of Cav-1 function in skin fibroblasts from SSc patients reversed their pro-fibrotic phenotype. Here, we further investigated whether Cav-1 mice are a useful pre-clinical model for studying the pathogenesis of SSc. For this purpose, we performed quantitative transmission electron microscopy, as well as biochemical and immuno-histochemical analysis, of the skin from Cav-1 (-/-) null mice. Using these complementary approaches, we now show that skin from Cav-1 null mice exhibits many of the same characteristics as SSc skin from patients, including a decrease in collagen fiber diameter, increased tensile strength, and stiffness, as well as mononuclear cell infiltration. Furthermore, an increase in autophagy/mitophagy was observed in the stromal cells of the dermis from Cav-1 (-/-) mice. These findings suggest that changes in cellular energy metabolism (e.g., a shift towards aerobic glycolysis) in these stromal cells may be a survival mechanism in this "hostile" or pro-inflammatory microenvironment. Taken together, our results demonstrate that Cav-1 (-/-) null mice are a valuable new pre-clinical model for studying scleroderma. Most importantly, our results suggest that inhibition of autophagy and/or aerobic glycolysis may represent a new promising therapeutic strategy for halting fibrosis in SSc patients. Finally, Cav-1 (-/-) null mice are also a pre-clinical model for a "lethal" tumor micro-environment, possibly explaining the link between fibrosis, tumor progression, and cancer metastasis.


Assuntos
Caveolina 1/metabolismo , Camundongos Knockout , Esclerodermia Localizada , Escleroderma Sistêmico , Pele , Animais , Autofagia , Caveolina 1/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Feminino , Fibronectinas/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Esclerodermia Localizada/metabolismo , Esclerodermia Localizada/patologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Pele/citologia , Pele/metabolismo , Pele/patologia , Células Estromais/citologia , Células Estromais/metabolismo
7.
Cell Cycle ; 10(12): 2021-34, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21646868

RESUMO

We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1(-/-) null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1(-/-) MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy ("self-eating") and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the "Autophagic Tumor Stroma Model of Cancer" and identifies a novel "extracellular matrix"-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.


Assuntos
Autofagia , Matriz Extracelular/metabolismo , Mitocôndrias/metabolismo , Metástase Neoplásica , Células Estromais/patologia , Animais , Neoplasias da Mama/patologia , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Fibroblastos/patologia , Humanos , Camundongos , Mitocôndrias/patologia , Neoplasias/patologia , Neoplasias/ultraestrutura , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Transplante Heterólogo , Microambiente Tumoral
8.
Cell Cycle ; 9(12): 2412-22, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20562527

RESUMO

Previously, we proposed a new model for understanding the Warburg effect in tumorigenesis and metastasis. In this model, the stromal fibroblasts would undergo aerobic glycolysis (a.k.a., the Warburg effect)--producing and secreting increased pyruvate/lactate that could then be used by adjacent epithelial cancer cells as "fuel" for the mitochondrial TCA cycle, oxidative phosphorylation, and ATP production. To test this model more directly, here we used a matched set of metabolically well-characterized immortalized fibroblasts that differ in a single gene. CL3 fibroblasts show a shift towards oxidative metabolism, and have an increased mitochondrial mass. In contrast, CL4 fibroblasts show a shift towards aerobic glycolysis, and have a reduced mitochondrial mass. We validated these differences in CL3 and CL4 fibroblasts by performing an unbiased proteomics analysis, showing the functional upregulation of 4 glycolytic enzymes, namely ENO1, ALDOA, LDHA and TPI1, in CL4 fibroblasts. Many of the proteins that were upregulated in CL4 fibroblasts, as seen by unbiased proteomics, were also transcriptionally upregulated in the stroma of human breast cancers, especially in the patients that were prone to metastasis. Importantly, when CL4 fibroblasts were co-injected with human breast cancer cells (MDA-MB-231) in a xenograft model, tumor growth was dramatically enhanced. CL4 fibroblasts induced a > 4-fold increase in tumor mass, and a near 8-fold increase in tumor volume, without any measurable increases in tumor angiogenesis. In parallel, CL3 and CL4 fibroblasts both failed to form tumors when they were injected alone, without epithelial cancer cells. Mechanistically, under co-culture conditions, CL4 glycolytic fibroblasts increased mitochondrial activity in adjacent breast cancer cells (relative to CL3 cells), consistent with the "Reverse Warburg Effect". Notably, Western blot analysis of CL4 fibroblasts revealed a significant reduction in caveolin-1 (Cav-1) protein levels. In human breast cancer patients, a loss of stromal Cav-1 is associated with an increased risk of early tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. Thus, loss of stromal Cav-1 may be an effective marker for predicting the "Reverse Warburg Effect" in the stroma of human breast cancer patients. As such, CL4 fibroblasts are a new attractive model for mimicking the "glycolytic phenotype" of cancer-associated fibroblasts. Nutrients derived from glycolytic cancer associated fibroblasts could provide an escape mechanism to confer drug-resistance during anti-angiogenic therapy, by effectively reducing the dependence of cancer cells on a vascular blood supply.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caveolina 1/biossíntese , Proliferação de Células , Fibroblastos/metabolismo , Glicólise , Neovascularização Patológica , Animais , Neoplasias da Mama/irrigação sanguínea , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Células Estromais/metabolismo
9.
Cell Cycle ; 9(10): 1960-71, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20495363

RESUMO

We and others have previously identified a loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts (CAFs) as a powerful single independent predictor of breast cancer patient tumor recurrence, metastasis, tamoxifen-resistance, and poor clinical outcome. However, it remains unknown how loss of stromal Cav-1 mediates these effects clinically. To mechanistically address this issue, we have now generated a novel human tumor xenograft model. In this two-component system, nude mice are co-injected with i) human breast cancer cells (MDA-MB-231), and ii) stromal fibroblasts (wild-type (WT) versus Cav-1 (-/-) deficient). This allowed us to directly evaluate the effects of a Cav-1 deficiency solely in the tumor stromal compartment. Here, we show that Cav-1-deficient stromal fibroblasts are sufficient to promote both tumor growth and angiogenesis, and to recruit Cav-1 (+) micro-vascular cells. Proteomic analysis of Cav-1-deficient stromal fibroblasts indicates that these cells upregulate the expression of glycolytic enzymes, a hallmark of aerobic glycolysis (the Warburg effect). Thus, Cav-1-deficient stromal fibroblasts may contribute towards tumor growth and angiogenesis, by providing energy-rich metabolites in a paracrine fashion. We have previously termed this new idea the "Reverse Warburg Effect". In direct support of this notion, treatment of this xenograft model with glycolysis inhibitors functionally blocks the positive effects of Cav-1-deficient stromal fibroblasts on breast cancer tumor growth. Thus, pharmacologically-induced metabolic restriction (via treatment with glycolysis inhibitors) may be a promising new therapeutic strategy for breast cancer patients that lack stromal Cav-1 expression. We also identify the stromal expression of PKM2 and LDH-B as new candidate biomarkers for the "Reverse Warburg Effect" or "Stromal-Epithelial Metabolic Coupling" in human breast cancers.


Assuntos
Caveolina 1/deficiência , Fibroblastos/metabolismo , Glicólise/efeitos dos fármacos , Lactato Desidrogenases/metabolismo , Piruvato Quinase/metabolismo , Animais , Western Blotting , Caveolina 1/genética , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Desoxiglucose/farmacologia , Ácido Dicloroacético/farmacologia , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Fibroblastos/citologia , Humanos , Imuno-Histoquímica , Lactato Desidrogenases/genética , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Proteômica , Piruvato Quinase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Cycle ; 8(23): 3984-4001, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19923890

RESUMO

Here, we propose a new model for understanding the Warburg effect in tumor metabolism. Our hypothesis is that epithelial cancer cells induce the Warburg effect (aerobic glycolysis) in neighboring stromal fibroblasts. These cancer-associated fibroblasts, then undergo myo-fibroblastic differentiation, and secrete lactate and pyruvate (energy metabolites resulting from aerobic glycolysis). Epithelial cancer cells could then take up these energy-rich metabolites and use them in the mitochondrial TCA cycle, thereby promoting efficient energy production (ATP generation via oxidative phosphorylation), resulting in a higher proliferative capacity. In this alternative model of tumorigenesis, the epithelial cancer cells instruct the normal stroma to transform into a wound-healing stroma, providing the necessary energy-rich micro-environment for facilitating tumor growth and angiogenesis. In essence, the fibroblastic tumor stroma would directly feed the epithelial cancer cells, in a type of host-parasite relationship. We have termed this new idea the "Reverse Warburg Effect." In this scenario, the epithelial tumor cells "corrupt" the normal stroma, turning it into a factory for the production of energy-rich metabolites. This alternative model is still consistent with Warburg's original observation that tumors show a metabolic shift towards aerobic glycolysis. In support of this idea, unbiased proteomic analysis and transcriptional profiling of a new model of cancer-associated fibroblasts (caveolin-1 (Cav-1) deficient stromal cells), shows the upregulation of both (1) myo-fibroblast markers and (2) glycolytic enzymes, under normoxic conditions. We validated the expression of these proteins in the fibroblastic stroma of human breast cancer tissues that lack stromal Cav-1. Importantly, a loss of stromal Cav-1 in human breast cancers is associated with tumor recurrence, metastasis, and poor clinical outcome. Thus, an absence of stromal Cav-1 may be a biomarker for the "Reverse Warburg Effect," explaining its powerful predictive value.


Assuntos
Neoplasias da Mama/metabolismo , Fibroblastos/metabolismo , Glicólise , Animais , Anexinas/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Caveolina 1/metabolismo , Feminino , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Camundongos Knockout , Proteômica , Piruvato Quinase/metabolismo , Células Estromais/metabolismo , Tenascina/metabolismo , Regulação para Cima
11.
BMC Cancer ; 9: 94, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19323811

RESUMO

BACKGROUND: Interactions between cancer cells and stroma are critical for growth and invasiveness of epithelial tumors. The biochemical mechanisms behind tumor-stromal interactions leading to increased invasiveness and metastasis are mostly unknown. The goal of this study was to analyze the direct effects of staged stroma-derived extracellular matrices on breast cancer cell behavior. METHODS: Early and late three-dimensional matrices were produced by NIH-3T3 and tumor-associated murine fibroblasts, respectively. After removing fibroblasts, extracted matrices were re-cultured with breast epithelial cells of assorted characteristics: MCF-10A (non-tumorigenic), MCF-7 (tumorigenic, non-invasive), and MDA-MB-231 (tumorigenic, invasive). Effects prompted by staged matrices on epithelial cell's growth, morphology and invasion were determined. Also, matrix-induced velocity, directionality and relative track orientation of invasive cells were assessed in the presence or absence of inhibitors of phosphoinositide-3 kinase (PI3K) and/or beta-1 integrin. RESULTS: We observed that assorted breast epithelial cells reacted differently to two-dimensional vs. staged, control (early) and tumor-associated (late), three-dimensional matrices. MCF-10A had a proliferative advantage on two-dimensional substrates while MCF-7 and MDA-MB-231 showed no difference. MCF-10A and MCF-7 formed morphologically distinguishable aggregates within three-dimensional matrices, while MDA-MB-231 exhibited increased spindle-shape morphologies and directional movements within three-dimensional matrices. Furthermore, MDA-MB-231 acquired a pattern of parallel oriented organization within tumor-associated, but not control matrices. Moreover, tumor-associated matrices induced PI3K and beta1-integrin dependent Akt/PKB activity in MDA-MB-231 cells. Interestingly, beta1-integrin (but not PI3K) regulated tumor-associated matrix-induced mesenchymal invasion which, when inhibited, resulted in a change of invasive strategy rather than impeding invasion altogether. CONCLUSION: We propose that both cells and matrices are important to promote effective breast cancer cell invasion through three-dimensional matrices and that beta1-integrin inhibition is not necessarily sufficient to block tumor-matrix induced breast cancer cell invasion. Additionally, we believe that characterizing stroma staging (e.g., early vs. late or tumor-associated) might be beneficial for predicting matrix-induced cancer cell responses in order to facilitate the selection of therapies.


Assuntos
Matriz Extracelular/fisiologia , Integrina beta1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células , Forma Celular/fisiologia , Técnicas de Cocultura , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Integrina beta1/imunologia , Camundongos , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
12.
Methods Mol Biol ; 522: 275-305, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19247611

RESUMO

It is increasingly recognized that interactions between cancer cells and their surrounding stroma are critical for promoting the growth and invasiveness of tumors. For example, cancer cells alter the topography and molecular composition of stromal extracellular matrix by increasing paracrine regulation of fibroblastic stromal cells during early tumor development. In turn, these physical and biochemical alterations of the stroma, profoundly affect the properties of the cancer cells. However, little is known about the cross-talk between stroma and cancer cells, and it is mainly due to the lack of a suitable in vitro system to mimic the stroma in vivo. We present an in vivo-like 3D stromal system derived from fibroblasts harvested from tissue samples representing various stages of stroma progression during tumorigenesis. The chapter describes how to isolate and characterize fibroblasts from a plethora of tissue samples. It describes how to produce and characterize fibroblast-derived 3D matrices. Finally, it describes how to test matrix permissiveness by analyzing the morphology of cancer cells cultured within various 3D matrices.


Assuntos
Transformação Celular Neoplásica , Células Estromais/citologia , Fibroblastos/citologia , Técnica Indireta de Fluorescência para Anticorpo
13.
Matrix Biol ; 27(6): 573-585, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18411046

RESUMO

Recent studies have emphasized the importance of cellular microenvironment in modulating cell growth and signaling. In vitro, collagen matrices, Matrigel, and other synthetic support systems have been used to simulate in vivo microenvironments, and epithelial cells grown in these matrices manifest significant differences in proliferation, differentiation, response to drugs, and other parameters. However, these substrates do not closely resemble the mesenchymal microenvironment that is typically associated with advanced carcinomas in vivo, which is produced to a large extent by fibroblasts. In this study, we have evaluated the ability of a fibroblast-derived three-dimensional matrix to regulate the growth of a panel of 11 human tumor epithelial cell lines. Although proliferative and morphological responses to three-dimensional cues segregated independently, general responsiveness to the matrix correlated with the ability of matrix to influence drug responses. Fibroblast-derived three-dimensional matrix increased beta1-integrin-dependent survival of a subset of human cancer cell lines during taxol treatment, while it sensitized or minimally influenced survival of other cells. beta1-integrin-dependent changes in cell resistance to taxol did not correlate with the degree of modulation of FAK and Akt, implying that additional signaling factors are involved. Based on these results, we propose that these matrices potentially have value as in vitro drug screening platforms.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células , Alicerces Teciduais , Células Tumorais Cultivadas , Animais , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/citologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Teste de Materiais , Camundongos , NF-kappa B/metabolismo , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas/citologia , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...