Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunobiology ; 221(5): 679-89, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26822552

RESUMO

Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host.


Assuntos
Proteínas de Bactérias/imunologia , Complemento C3b/imunologia , Complemento C5/imunologia , Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Evasão da Resposta Imune , Antígenos de Bactérias/imunologia , Sítios de Ligação , Complemento C3b/metabolismo , Proteína de Ligação ao Complemento C4b/metabolismo , Complemento C5/metabolismo , Ativação Enzimática , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leptospira interrogans/imunologia , Leptospirose/imunologia , Leptospirose/metabolismo , Concentração Osmolar , Ligação Proteica , Proteólise
2.
PLoS One ; 9(11): e112730, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409527

RESUMO

Infections caused by Staphylococcus aureus--particularly nosocomial infections--represent a great concern. Usually, the early stage of pathogenesis consists on asymptomatic nasopharynx colonization, which could result in dissemination to other mucosal niches or invasion of sterile sites, such as blood. This pathogenic route depends on scavenging of nutrients as well as binding to and disrupting extracellular matrix (ECM). Manganese transport protein C (MntC), a conserved manganese-binding protein, takes part in this infectious scenario as an ion-scavenging factor and surprisingly as an ECM and coagulation cascade binding protein, as revealed in this work. This study showed a marked ability of MntC to bind to several ECM and coagulation cascade components, including laminin, collagen type IV, cellular and plasma fibronectin, plasminogen and fibrinogen by ELISA. The MntC binding to plasminogen appears to be related to the presence of surface-exposed lysines, since previous incubation with an analogue of lysine residue, ε-aminocaproic acid, or increasing ionic strength affected the interaction between MntC and plasminogen. MntC-bound plasminogen was converted to active plasmin in the presence of urokinase plasminogen activator (uPA). The newly released plasmin, in turn, acted in the cleavage of the α and ß chains of fibrinogen. In conclusion, we describe a novel function for MntC that may help staphylococcal mucosal colonization and establishment of invasive disease, through the interaction with ECM and coagulation cascade host proteins. These data suggest that this potential virulence factor could be an adequate candidate to compose an anti-staphylococcal human vaccine formulation.


Assuntos
Proteínas de Bactérias/metabolismo , Matriz Extracelular/metabolismo , Plasminogênio/metabolismo , Staphylococcus aureus/metabolismo , Adesividade , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Coagulação Sanguínea , Sequência Conservada , Feminino , Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Humanos , Lisina , Camundongos , Concentração Osmolar , Ligação Proteica , Proteólise
3.
PLoS One ; 9(10): e111194, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347183

RESUMO

Pasteurella pneumotropica is an opportunist Gram negative bacterium responsible for rodent pasteurellosis that affects upper respiratory, reproductive and digestive tracts of mammals. In animal care facilities the presence of P. pneumotropica causes severe to lethal infection in immunodeficient mice, being also a potential source for human contamination. Indeed, occupational exposure is one of the main causes of human infection by P. pneumotropica. The clinical presentation of the disease includes subcutaneous abscesses, respiratory tract colonization and systemic infections. Given the ability of P. pneumotropica to fully disseminate in the organism, it is quite relevant to study the role of the complement system to control the infection as well as the possible evasion mechanisms involved in bacterial survival. Here, we show for the first time that P. pneumotropica is able to survive the bactericidal activity of the human complement system. We observed that host regulatory complement C4BP and Factor H bind to the surface of P. pneumotropica, controlling the activation pathways regulating the formation and maintenance of C3-convertases. These results show that P. pneumotropica has evolved mechanisms to evade the human complement system that may increase the efficiency by which this pathogen is able to gain access to and colonize inner tissues where it may cause severe infections.


Assuntos
Proteína de Ligação ao Complemento C4b/imunologia , Fator H do Complemento/imunologia , Pasteurella pneumotropica/imunologia , Convertases de Complemento C3-C5/metabolismo , Humanos
4.
J Infect Dis ; 209(6): 876-86, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24163418

RESUMO

Leptospirosis is an infectious disease of public health importance. To successfully colonize the host, pathogens have evolved multiple strategies to escape the complement system. Here we demonstrate that the culture supernatant of pathogenic but not saprophytic Leptospira inhibit the three complement pathways. We showed that the proteolytic activity in the supernatants of pathogenic strains targets the central complement molecule C3 and specific proteins from each pathway, such as factor B, C2, and C4b. The proteases cleaved α and ß chains of C3 and work in synergy with host regulators to inactivate C3b. Proteolytic activity was inhibited by 1,10-phenanthroline, suggesting the participation of metalloproteases. A recombinant leptospiral metalloprotease from the thermolysin family cleaved C3 in serum and could be one of the proteases responsible for the supernatant activity. We conclude that pathogenic leptospiral proteases can deactivate immune effector molecules and represent potential targets to the development of new therapies in leptospirosis.


Assuntos
Proteínas de Bactérias/metabolismo , Complemento C3/metabolismo , Leptospira/imunologia , Leptospirose/microbiologia , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Via Clássica do Complemento , Humanos , Evasão da Resposta Imune , Leptospira/química , Leptospira/enzimologia , Leptospira/patogenicidade , Leptospirose/imunologia , Modelos Biológicos , Peptídeo Hidrolases/imunologia , Peptídeo Hidrolases/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termolisina/química , Termolisina/metabolismo
5.
J Infect Dis ; 205(6): 995-1004, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22291192

RESUMO

Leptospira, the causative agent of leptospirosis, interacts with several host molecules, including extracellular matrix components, coagulation cascade proteins, and human complement regulators. Here we demonstrate that acquisition of factor H (FH) on the Leptospira surface is crucial for bacterial survival in the serum and that these spirochetes, besides interacting with FH, FH related-1, and C4b binding protein (C4BP), also acquire FH like-1 from human serum. We also demonstrate that binding to these complement regulators is mediated by leptospiral immunoglobulin-like (Lig) proteins, previously shown to interact with fibronectin, laminin, collagen, elastin, tropoelastin, and fibrinogen. Factor H binds to Lig proteins via short consensus repeat domains 5 and 20. Competition assays suggest that FH and C4BP have distinct binding sites on Lig proteins. Moreover, FH and C4BP bound to immobilized Ligs display cofactor activity, mediating C3b and C4b degradation by factor I. In conclusion, Lig proteins are multifunctional molecules, contributing to leptospiral adhesion and immune evasion.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas Inativadoras do Complemento C3b/metabolismo , Antígenos de Histocompatibilidade/metabolismo , Leptospira/patogenicidade , Leptospirose/imunologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Sítios de Ligação , Clonagem Molecular , Complemento C3b/metabolismo , Proteína de Ligação ao Complemento C4b/metabolismo , Fator H do Complemento/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos , Evasão da Resposta Imune , Imunoglobulinas/química , Leptospira/genética , Leptospira/metabolismo , Leptospirose/microbiologia , Plasmídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...