Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(3): e2307747, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37990971

RESUMO

Current treatments for modulating the glial-mediated inflammatory response after spinal cord injury (SCI) have limited ability to improve recovery. This is quite likely due to the lack of a selective therapeutic approach acting on microgliosis and astrocytosis, the glia components most involved after trauma, while maximizing efficacy and minimizing side effects. A new nanogel that can selectively release active compounds in microglial cells and astrocytes is developed and characterized. The degree of selectivity and subcellular distribution of the nanogel is evaluated by applying an innovative super-resolution microscopy technique, expansion microscopy. Two different administration schemes are then tested in a SCI mouse model: in an early phase, the nanogel loaded with Rolipram, an anti-inflammatory drug, achieves significant improvement in the animal's motor performance due to the increased recruitment of microglia and macrophages that are able to localize the lesion. Treatment in the late phase, however, gives opposite results, with worse motor recovery because of the widespread degeneration. These findings demonstrate that the nanovector can be selective and functional in the treatment of the glial component in different phases of SCI. They also open a new therapeutic scenario for tackling glia-mediated inflammation after neurodegenerative events in the central nervous system.


Assuntos
Polietilenoglicóis , Polietilenoimina , Traumatismos da Medula Espinal , Camundongos , Animais , Nanogéis/uso terapêutico , Traumatismos da Medula Espinal/patologia , Neuroglia/patologia , Microglia
2.
Int J Pharm ; 644: 123353, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37647976

RESUMO

In recent years, advancements in bioengineering and materials science have witnessed increasing interest in synthetic polymers capable of fulfilling various applications. Owing to their distinctive properties, Pluronics can be used as nano-drug carriers, to deliver poorly water-soluble drugs, and as model systems to study colloidal science by tuning amphiphilic properties. In this work, we investigated the effect of diclofenac sodium on the self-assembly and thermoresponsive crystallization of Pluronic F68 in water solutions, by employing experimental rheology and Nuclear Magnetic Resonance (NMR). We built a complete phase diagram as a function of temperature and concentration for 45 wt% Pluronic F68 with various amounts of diclofenac sodium in water. The morphological transitions were followed as a function of temperature via linear rheology. We extrapolated the transition temperatures - identifying distinct phases - as a function of the drug concentration and proposed an empirical model for their prediction. NMR analysis provided further information on the structural characteristics of the systems, shedding light on the interactions between F68 and diclofenac sodium. Although dealing with a pharmaceutical salt, the study is focused on a colloidal system and its interaction with a binding molecule, that is of general interest for colloidal science.


Assuntos
Transição de Fase , Diclofenaco/química , Soluções/química , Poloxâmero/química , Reologia , Temperatura , Espectroscopia de Ressonância Magnética , Difusão
3.
Int J Biol Macromol ; 252: 126284, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572821

RESUMO

Agarose hydrogels are three-dimensional hydrophilic polymeric frameworks characterised by high water content, viscoelastic properties, and excellent ability as cell and drug delivery systems. However, their hydrophilicity as gel systems makes loading of hydrophobic drugs difficult and often ineffective. The incorporation of amphiphilic molecules (e.g. cyclodextrins) into hydrogels as hosts able to form inclusion complexes with hydrophobic drugs could be a possible solution. However, if not properly confined, the host compounds can get out of the network resulting in uncontrolled release. Therefore, in this work, ß-cyclodextrins-based host-guest supramolecular hydrogel systems were synthesised, with ß-cyclodextrins (ß-CD) covalently bound to the polymeric network, preventing leakage of the host molecules. Hydrogels were prepared at two different ß-CD-functionalized polyvinyl alcohol (PVA)/agarose ratios, and characterised chemically and physically. Then ibuprofen, a drug often used as a gold standard in studies involving ß-CD both in its hydrophilic and hydrophobic forms, was selected to investigate the release behavior of the synthesised hydrogels and the influence of ß-CD on the release. The presence of ß-CD linked to the polymeric 3D network ensured a higher and prolonged release profile for the hydrophobic drug and also seemed to have some influence on the hydrophilic one.


Assuntos
Ciclodextrinas , beta-Ciclodextrinas , Ibuprofeno , Sefarose , Hidrogéis/química , beta-Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Ciclodextrinas/química , Polímeros
4.
Chemistry ; 29(57): e202302025, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37459420

RESUMO

In general, due to the lack of efficient specific molecular interactions, achieving host-guest molecular recognition inside large and neutral metal-organic cages (MOCs) is challenging. Preferential molecular recognition of aromatics using the internal binding sites of interlocked icosahedral (i. e., spherical) M12 L8 MOCs within poly-[n]-catenane (1) is reported. The guest absorption was monitored directly in the solid-state by consecutive single-crystal-to-single-crystal (SCSC) reactions in a gas-solid environment, in single-crystal X-ray diffraction (SC-XRD) experiments. The preferential guest uptake was corroborated by density functional theory (DFT) calculations by determining the host-guest interaction energy (Ehost-guest ) with a nitrobenzene (NB)≫p-xylene (p-xy)≫o-dichlorobenzene (o-DCB) trend (i. e., from 44 to 25 kcal mol-1 ), assessing the XRD outcomes. Combining SC-XRD, DFT and solid-state 13 C NMR, the exceptional stability of the M12 L8 cages, together with the guest exchange/release properties were rationalized by considering the presence of mechanical bonds (efficient π-π interactions) and by the pyridine's rotor-like behaviour (with 3 kcal mol-1 rotational energy barrier). The structure-function properties of M12 L8 makes 1 a potential candidate in the field of molecular sensors.

5.
Materials (Basel) ; 16(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37049043

RESUMO

In this study, functional Pluronic F127 precursors were designed and synthesized for the preparation of thermosensitive hydrogels. Using linear Pluronic thioacetate and Pluronic multi-acrylate precursors, F127-based hydrogels were prepared through thioacetate deprotection-mediated Michael-type addition. The properties of these gels were compared to those obtained through free radical crosslinking of F127 diacrylate. Temperature was found to have a clear influence on gel swelling as a result of F127 thermoresponsiveness. The macromolecular architecture and functionality of the precursors were also optimized and characterized in terms of gelation kinetics and drug diffusion. In vitro tests were conducted on fibroblasts and endothelial cells to assess their response to cellular adhesion with Pluronic gels that were functionalized with an RGD peptide or pretreated with serum proteins to promote cell adhesion. This study provides a method for creating tailored hydrogels suitable for various biomedical applications, such as soft-tissue engineering, cell encapsulation, wound healing, and sustained delivery of therapeutic molecules.

6.
Carbohydr Polym ; 301(Pt A): 120309, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436870

RESUMO

Hydrogels based on hyaluronic acid (HA) and agarose-carbomer (AC) raised an increasing interest as drug delivery systems. The complex architecture of the polymer network, such as mesh size, HA molecular weight and drug-polymer non covalent interactions across the 3D polymer matrix strongly influence the release capability/profile of these materials. In this study, AC-HA hydrogels with different mesh sizes have been prepared and characterised. High Resolution Magic Angle Spinning (HR-MAS) NMR spectroscopy has been used to investigate the motion of two drugs, such as ethosuximide (neutral molecule) and sodium salicylate (net negative charge) within the AC and AC-HA hydrogel networks. Analysis of the experimental data provides evidence of superdiffusive motion for all formulations containing sodium salicylate, while ethosuximide molecules undergo unrestricted diffusion within the gel matrix. We further speculate that the superdiffusive motion, observed at the nanoscale, can be responsible for the faster release of sodium salicylate from all hydrogel formulations.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Ácido Hialurônico/química , Salicilato de Sódio , Etossuximida , Espectroscopia de Ressonância Magnética , Sefarose/química
7.
ACS Omega ; 7(47): 42845-42853, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467913

RESUMO

Bijels (bicontinuous interfacially jammed emulsion gels) raised an increasing interest as biomaterials for controlled drug delivery due to their biphasic nature organized in mesoscopic tortuous domains. Two bijel formulations were prepared and explored as delivery systems for both hydrophilic and lipophilic drugs, ethosuximide and dimethyl fumarate. The two bijel-like structures, based on polymerized ε-caprolactone/water, differ in the stabilizing nanoparticle hydroxyapatite (inorganic) and nanogel-based nanoparticles (organic). Diffusion nuclear magnetic resonance spectroscopy has been used to characterize the bijel structure and the transport behavior of the drug molecules confined within the water/organic interconnected domains. A reduced diffusion coefficient is observed for several concentrations of the drugs and both bijel formulations. Moreover, in vitro release profiles also reveal the effect of the microstructure and drug-nanoparticle interactions.

8.
Materials (Basel) ; 15(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36363050

RESUMO

Choline-based deep eutectic solvents (DESs) are potential candidates to replace flammable organic solvent electrolytes in lithium-ion batteries (LIBs). The effect of the addition of a lithium salt on the structure and dynamics of the material needs to be clarified before it enters the battery. Here, the archetypical DES choline chloride:urea at 1:2 mole fraction has been added with lithium chloride at two different concentrations and the effect of the additional cation has been evaluated with respect to the non-doped system via multinuclear NMR techniques. 1H and 7Li spin-lattice relaxation times and diffusion coefficients have been measured between 298 K and 373 K and revealed a decrease in both rotational and translational mobility of the species after LiCl doping at a given temperature. Temperature dependent 35Cl linewidths reflect the viscosity increase upon LiCl addition, yet keep track of the lithium complexation. Quantitative indicators such as correlation times and activation energies give indirect insights into the intermolecular interactions of the mixtures, while lithium single-jump distance and transference number shed light into the lithium transport, being then of help in the design of future DES electrolytes.

9.
J Phys Chem B ; 126(36): 7006-7014, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039977

RESUMO

Protic ionic liquids (PILs) are potential candidates as electrolyte components in energy storage devices. When replacing flammable and volatile organic solvents, PILs are expected to improve the safety and performance of electrochemical devices. Considering their technical application, a challenging task is the understanding of the key factors governing their intermolecular interactions and physicochemical properties. The present work intends to investigate the effects of the structural features on the properties of a promising PIL based on the 1,8-diazabicyclo[5.4.0]undec-7-ene (DBUH+) cation and the (trifluoromethanesulfonyl)(nonafluorobutanesulfonyl)imide (IM14-) anion, the latter being a remarkably large anion with an uneven distribution of the C-F pool between the two sides of the sulfonylimide moieties. For comparison purposes, the experimental investigations were extended to PILs composed of the same DBU-based cation and the trifluoromethanesulfonate (TFO-) or bis(trifluoromethanesulfonyl)imide (TFSI-) anion. The combined use of multiple NMR methods, thermal analyses, density, viscosity, and conductivity measurements provides a deep characterization of the PILs, unveiling peculiar behaviors in DBUH-IM14, which cannot be predicted solely on the basis of differences between aqueous pKa values of the protonated base and the acid (ΔpKa). Interestingly, the thermal and electrochemical properties of DBUH-IM14 turn out to be markedly governed by the size and asymmetric nature of the anion. This observation highlights that the structural features of the precursors are an important tool to tailor the PIL's properties according to the specific application.

10.
Dalton Trans ; 51(1): 53-58, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34889335

RESUMO

Using mechanochemistry by grinding TPB and ZnBr2, an amorphous poly-[n]-catenane of interlocked M12L8 nanocages is obtained in good yields (∼80%) and within 15 minutes. The mechanical bond among the icosahedral M12L8 cages in the amorphous phase has been demonstrated by single crystal XRD, powder XRD and FT-IR spectroscopy following an amorphous-to-crystalline transformation by guest uptake of the amorphous phase. High-resolution solid-state 13C NMR spectroscopy gives insights into the local structure of the amorphous catenane focusing on TPB aromatic-aromatic interactions.

11.
J Phys Chem Lett ; 12(35): 8658-8663, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34472860

RESUMO

The nuclear Overhauser effect (NOE) is a powerful tool in molecular structure elucidation, combining the subtle chemical shift of NMR and three-dimensional information independent of chemical connectivity. Its usage for intermolecular studies, however, is fundamentally limited by an unspecific long-ranged interaction behavior. This joint experimental and computational work shows that proper selection of interacting isotopes can overcome these limitations: Isotopes with strongly differing gyromagnetic ratios give rise to short-ranged intermolecular NOEs. In this light, existing NOE experiments need to be re-evaluated and future ones can be designed accordingly. Thus, a new chapter on intermolecular structure elucidation is opened.

12.
Chemphyschem ; 22(18): 1880-1890, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34251740

RESUMO

The dynamics of xenon gas, loaded in a series of 1-alkyl-3-methylimidazolium based ionic liquids, probes the formation of increasingly blurred polar/apolar nanodomains as a function of the anion type and the cation chain length. Exploiting 129 Xe NMR spectroscopy techniques, like Pulse Gradient Spin Echo (PGSE) and inversion recovery (IR), the diffusion motion and relaxation times are determined for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Cn C1 im][TFSI]. A correlation between the ILs nano-structure and both xenon diffusivity and relaxation times, as well as chemical shifts, is outlined. Interestingly, comparison with previous results of the same properties in the homologous imidazolium chlorides and hexafluorophospate shows an opposite trend with the alkyl chain length. Classical molecular dynamics (MD) simulations are used to calculate the xenon and cation and anion diffusion coefficients in the same systems, including imidazolium cations with longer chains (n=4, 6, 8 … 20). An almost quantitative agreement with the experiments validates the MD simulations and, at the same time, provides the necessary structural and dynamic microscopic insights on the nano-segregation and diffusion of xenon in bistriflimide, chloride and hexafluorphosphate salts allowing to observe and rationalize the shaping effect of the cation in the nanostructure.

13.
J Phys Chem B ; 124(30): 6617-6627, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32613834

RESUMO

The translational dynamics of xenon gas dissolved in room-temperature ionic liquids (RTILs) is revealed by 129Xe NMR and molecular dynamics (MD) simulations. The dynamic behavior of xenon gas loaded in 1-alkyl-3-methylimidazolium chloride, [CnC1im]Cl (n = 6, 8, 10), and hexafluorophosphate, [CnC1im][PF6] (n = 4, 6, 8, 10) has been determined by measuring the 129Xe diffusion coefficients and NMR relaxation times. The analysis of the experimental NMR data demonstrates that, in these representative classes of ionic liquids, xenon motion is influenced by the length of the cation alkyl chain and anion type. 129Xe spin-lattice relaxation times are well described with a monoexponential function, indicating that xenon gas in ILs effectively experiences a single average environment. These experimental results can be rationalized based on the analysis of classical MD trajectories. The mechanism described here can be particularly useful in understanding the separation and adsorption properties of RTILs.

14.
ACS Appl Mater Interfaces ; 12(21): 23800-23811, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32352774

RESUMO

Ternary systems consisting of polymers, lithium salts, and ionic liquids (ILs) are promising materials for the development of next-generation lithium batteries. The ternary systems combine the advantages of polymer-salt and IL-salt systems, thus providing media with high ionic conductivity and solid-like mechanical properties. In this work, we apply nuclear magnetic resonance 1H microimaging [magnetic resonance imaging (MRI)] techniques and molecular dynamics (MD) simulations to study the translational and rotational dynamics of the N-butyl-N-methylpyrrolidinium (PYR14) cation in poly(ethylene oxide) (PEO) matrices containing the lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) and the PYR14TFSI IL. The analysis of diffusion-weighted images in PEO/LiTFSI/PYR14TFSI samples with varying mole ratios (10:1:x, with x = 1, 2, 3, and 4) shows, in a wide range of temperatures, a spatially heterogeneous distribution of PYR14 diffusion coefficients. Their weight-averaged values increase with IL content but remain well below the values estimated for the neat IL. The analysis of T2 (spin-spin relaxation) parametric images shows that the PEO matrix significantly hinders PYR14 rotational freedom, which is only partially restored by increasing the IL content. The MD simulations, performed on IL-filled cavities within the PEO matrix, reveal that PYR14 diffusion is mainly affected by Li/TFSI coordination within the IL phase. In agreement with MRI experiments, increasing the IL content increases the PYR14 diffusion coefficients. Finally, the analysis of MD trajectories suggests that Li diffusion mostly develops within the IL phase, although a fraction of Li cations is strongly coordinated by PEO oxygen atoms.

15.
J Phys Chem B ; 124(14): 2879-2891, 2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32186377

RESUMO

Ionic liquid (IL) mixtures have been proposed as a viable alternative to rationally fine-tune the physicochemical properties of ILs for a variety of applications. The understanding of the effects of mixing ILs on the properties of the mixtures is however only in the very early stages. Two series of ionic liquid mixtures, based on the 1-ethyl-3-methylimidazolium and 1-dodecyl-3-methylimidazolium cations, and having a common anion (tetrafluoroborate or bis(trifluoromethylsulfonyl)imide), have been prepared and deeply characterized via multiple NMR techniques. Diffusion and relaxation methods combined with 2D ion-ion correlation (nuclear Overhauser enhancement) experiments have been used for a better understanding of the interplay between dynamics and structure of IL mixtures. A crucial role of the anion in driving the mixture's behavior emerged, making them important "dynamic probes" for gaining information of the polar and nonpolar regions of ionic liquids and their mixtures.

16.
Materials (Basel) ; 13(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906423

RESUMO

Stable hydrogels with tunable rheological properties were prepared by adding Ca2+ ions to aqueous dispersions of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO)-oxidized and ultra-sonicated cellulose nanofibers (TOUS-CNFs). The gelation occurred by interaction among polyvalent cations and the carboxylic units introduced on TOUS-CNFs during the oxidation process. Both dynamic viscosity values and pseudoplastic rheological behaviour increased by increasing the Ca2+ concentration, confirming the cross-linking action of the bivalent cation. The hydrogels were proved to be suitable controlled release systems by measuring the diffusion coefficient of a drug model (ibuprofen, IB) by high-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. IB was used both as free molecule and as a 1:1 pre-formed complex with ß-cyclodextrin (IB/ß-CD), showing in this latter case a lower diffusion coefficient. Finally, the cytocompatibility of the TOUS-CNFs/Ca2+ hydrogels was demonstrated in vitro by indirect and direct tests conducted on a L929 murine fibroblast cell line, achieving a percentage number of viable cells after 7 days higher than 70%.

17.
Magn Reson Chem ; 58(3): 271-279, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31826301

RESUMO

Electrophoretic nuclear magnetic resonance (eNMR) is a powerful tool in studies of nonaqueous electrolytes, such as ionic liquids. It delivers electrophoretic mobilities of the ionic constituents and thus sheds light on ion correlations. In applications of liquid electrolytes, uncharged additives are often employed, detectable via 1 H NMR. Characterizing their mobility and coordination to charged entities is desirable; however, it is often hampered by small intensities and 1 H signals overlapping with major constituents of the electrolyte. In this work, we evaluate methods of phase analysis of overlapping resonances to yield electrophoretic mobilities even for minor constituents. We use phase-sensitive spectral deconvolution via a set of Lorentz distributions for the investigation of the migration behavior of additives in two different ionic liquid-based lithium salt electrolytes. For vinylene carbonate as an additive, no field-induced drift is observed; thus, its coordination to the Li+ ion does not induce a correlated drift with Li+ . On the other hand, in a solvate ionic liquid with tetraglyme (G4) as an additive, a correlated migration of tetraglyme with lithium as a complex solvate cation is directly proven by eNMR. The phase evaluation procedure of superimposed resonances thus broadens the applicability of eNMR to application-relevant complex electrolyte mixtures containing neutral additives with superimposed resonances.

18.
J Control Release ; 305: 110-119, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31121281

RESUMO

Polymeric hydrogels are promising candidates for drug delivery applications, thanks to their ability to encapsulate, transport and release a wide range of chemicals. The successful application of these materials requires a deep understanding of the mechanisms governing solute transport at the nanoscale and its impact on release kinetics. In this work, we investigate the translational diffusion of ibuprofen loaded in anionic agarose-carbomer (AC) hydrogels by 1H high resolution magic angle spinning (HR-MAS) NMR spectroscopy, and compare it to its macroscopic release kinetics. The analysis of the experimental NMR data provides the first evidence of superdiffusion for ibuprofen in AC hydrogels. Superdiffusive transport is observed in the majority of our samples, especially those with the smallest mesh size (7 nm) and highest ibuprofen concentrations (90-120 mg/mL). This outcome is rationalized in terms of heavy-tailed distributions of spatial displacements (Lèvy flights) and of waiting times, which depend on the nanoscopic structural heterogeneity of the gels and the strong but reversible association between ibuprofen and the agarose matrix.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Sistemas de Liberação de Medicamentos , Hidrogéis/química , Ibuprofeno/administração & dosagem , Sefarose/química , Resinas Acrílicas/química , Ânions/química , Anti-Inflamatórios não Esteroides/química , Difusão , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ibuprofeno/química , Porosidade
19.
Phys Chem Chem Phys ; 21(11): 5999-6010, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30809621

RESUMO

Ionic liquid (IL) mixtures enable the design of fluids with finely tuned structural and physicochemical properties for myriad applications. In order to rationally develop and design IL mixtures with the desired properties, a thorough understanding of the structural origins of their physicochemical properties and the thermodynamics of mixing needs to be developed. To elucidate the structural origins of the excess molar volume within IL mixtures containing ions with different alkyl chain lengths, 3 IL mixtures containing 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ILs have been explored in a joint small angle X-ray scattering (SAXS) and 129Xe NMR study. The apolar domains of the IL mixtures were shown to possess similar dimensions to the largest alkyl chain of the mixture with the size evolution determined by whether the shorter alkyl chain was able to interact with the apolar domain. 129Xe NMR results illustrated that the origin of excess molar volume in these mixtures was due to fluctuations within these apolar domains arising from alkyl chain mismatch, with the formation of a greater number of smaller voids within the IL structure. These results indicate that free volume effects for these types of mixtures can be predicted from simple considerations of IL structure and that the structural basis for the formation of excess molar volume in these mixtures is substantially different to IL mixtures formed of different types of ions.

20.
J Phys Chem B ; 122(36): 8560-8569, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30118227

RESUMO

To increase the safety and stability of lithium-ion batteries, the development of electrolytes based on ionic liquids (ILs) has gained a lot of attention in recent years. However, with graphite electrodes, neat ILs afford weak cycling performance in the absence of organic additives (e.g., vinylene carbonate, VC). The potential formation of a [Li+]-OVC interaction/coordination could have a major influence on the observed electrochemical behavior of Li-ion batteries. On a specific electrolyte, 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C1C6Im][NTf2] in association with Li[NTf2] (1 mol L-1) and VC, we performed NOESY, {1H-7Li} HOESY correlations, and pulsed field gradient spin-echo NMR measurements, combined with molecular dynamics simulations to determine whether such an interaction/coordination between VC and Li+ ions is noticeable. {7Li-1H} HOESY experiment shows the vicinity of VC with [Li+] cation, and strong correlations and association between [Li+] and VC are observed in intense first peaks in radial distribution functions and quantified by the coordination numbers in the first solvation shell between [Li+] and the carbonyl oxygen atom of VC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...