Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 40(4): 359-370, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35260895

RESUMO

Megakaryocytes (MKs) is an important component of the hematopoietic niche. Abnormal MK hyperplasia is a hallmark feature of myeloproliferative neoplasms (MPNs). The JAK2V617F mutation is present in hematopoietic cells in a majority of patients with MPNs. Using a murine model of MPN in which the human JAK2V617F gene is expressed in the MK lineage, we show that the JAK2V617F-bearing MKs promote hematopoietic stem cell (HSC) aging, manifesting as myeloid-skewed hematopoiesis with an expansion of CD41+ HSCs, a reduced engraftment and self-renewal capacity, and a reduced differentiation capacity. HSCs from 2-year-old mice with JAK2V617F-bearing MKs were more proliferative and less quiescent than HSCs from age-matched control mice. Examination of the marrow hematopoietic niche reveals that the JAK2V617F-bearing MKs not only have decreased direct interactions with hematopoietic stem/progenitor cells during aging but also suppress the vascular niche function during aging. Unbiased RNA expression profiling reveals that HSC aging has a profound effect on MK transcriptomic profiles, while targeted cytokine array shows that the JAK2V617F-bearing MKs can alter the hematopoietic niche through increased levels of pro-inflammatory and anti-angiogenic factors. Therefore, as a hematopoietic niche cell, MKs represent an important connection between the extrinsic and intrinsic mechanisms for HSC aging.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Envelhecimento/genética , Animais , Modelos Animais de Doenças , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Megacariócitos/metabolismo , Camundongos , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo
2.
Exp Hematol Oncol ; 10(1): 47, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666822

RESUMO

Disease relapse after allogeneic stem cell transplantation is a major cause of treatment-related morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). The cellular and molecular mechanisms for MPN relapse are not well understood. Here, we established a murine model of MPN relapse, in which ~ 60% of the MPN recipient mice develop disease relapse after receiving stem cell transplantation with wild-type marrow donor. Using this model, we find that impaired wild-type cell function is associated with MPN disease relapse. We also show that competition between wild-type and JAK2V617F mutant cells can modulate the immune cell composition and PD-L1 expression induced by the JAK2V617F oncogene. These results suggest that cell competition between wild-type donor cells and JAK2V617F mutant recipient cells can prevent MPN disease relapse after stem cell transplantation.

4.
Blood Cells Mol Dis ; 90: 102585, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139651

RESUMO

The chronic myeloproliferative neoplasms (MPNs) are clonal stem cell disorders. The hematopoietic stem/progenitor cell (HSPC) compartment in patients with MPNs is heterogeneous with the presence of both wild-type and JAK2V617F mutant cells. Mechanisms responsible for mutant stem cell expansion in MPNs are not fully understood. Vascular endothelial cells (ECs) are an essential component of the hematopoietic microenvironment. ECs carrying the JAK2V617F mutation can be detected in patients with MPNs. Utilizing an ex vivo EC-HSPC co-culture system with mixed wild-type and JAK2V617F mutant ECs, we show that even small numbers of JAK2V617F mutant ECs can promote the expansion of JAK2V617F mutant HSPCs in preference to wild-type HSPCs during irradiation or cytotoxic chemotherapy, the two treatments commonly used in the conditioning regimen for stem cell transplantation, the only curative treatment for patients with MPNs. Mechanistically, we found that both cell-cell interactions and secreted factors are important for JAK2V617F mutant EC-mediated neoplastic hematopoiesis. Further understanding of how the JAK2V617F mutation alters vascular niche function will help identify new strategies to not only control neoplastic cell expansion but also prevent disease relapse in patients with MPNs.


Assuntos
Células Endoteliais/enzimologia , Neoplasias Hematológicas , Hematopoese , Células-Tronco Hematopoéticas/enzimologia , Janus Quinase 2 , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos , Células-Tronco Neoplásicas/enzimologia , Microambiente Tumoral , Substituição de Aminoácidos , Animais , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Camundongos Transgênicos , Transtornos Mieloproliferativos/enzimologia , Transtornos Mieloproliferativos/genética
5.
J Thromb Haemost ; 18(12): 3359-3370, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32920974

RESUMO

OBJECTIVE: Cardiovascular complications are the leading cause of morbidity and mortality in patients with myeloproliferative neoplasms (MPNs). The acquired kinase mutation JAK2V617F plays a central role in these disorders. Mechanisms responsible for cardiovascular dysfunction in MPNs are not fully understood, limiting the effectiveness of current treatment. Vascular endothelial cells (ECs) carrying the JAK2V617F mutation can be detected in patients with MPNs. The goal of this study was to test the hypothesis that the JAK2V617F mutation alters endothelial function to promote cardiovascular complications in patients with MPNs. APPROACH AND RESULTS: We employed murine models of MPN in which the JAK2V617F mutation is expressed in specific cell lineages. When JAK2V617F is expressed in both blood cells and vascular ECs, the mice developed MPN and spontaneous, age-related dilated cardiomyopathy with an increased risk of sudden death as well as a prothrombotic and vasculopathy phenotype on histology evaluation. In contrast, despite having significantly higher leukocyte and platelet counts than controls, mice with JAK2V617F-mutant blood cells alone did not demonstrate any cardiac dysfunction, suggesting that JAK2V617F-mutant ECs are required for this cardiovascular disease phenotype. Furthermore, we demonstrated that the JAK2V617F mutation promotes a pro-adhesive, pro-inflammatory, and vasculopathy EC phenotype, and mutant ECs respond to flow shear differently than wild-type ECs. CONCLUSIONS: These findings suggest that the JAK2V617F mutation can alter vascular endothelial function to promote cardiovascular complications in MPNs. Therefore, targeting the MPN vasculature represents a promising new therapeutic strategy for patients with MPNs.


Assuntos
Cardiomiopatias , Transtornos Mieloproliferativos , Neoplasias , Trombose , Animais , Modelos Animais de Doenças , Células Endoteliais , Humanos , Janus Quinase 2/genética , Camundongos , Mutação , Transtornos Mieloproliferativos/genética , Trombose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...