Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 197: 115738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37948871

RESUMO

In seafood, the study of metal(loid)s is essential to assess their toxicity and to establish risks of human exposure. This study investigates the content of As, Cd, Cu, Ni and Pb in Concholepas concholepas in a coastal environmental sacrifice zone (Chile) to assess potential human-health risks by consumption of C. concholepas. The Cu and Cd content was found to be above the safety level established in chilean and international regulations. The Estimated Daily Intake (EDI) and Target Hazard Quotient (THQ) for As were comparatively high with respect to the other metals analysed. The THQ-As and Hazard Index (HI) suggest a moderate carcinogenic risk due to the consumption of C. concholepas in six of the nine sectors analysed. THQ and HI are reasonable indicators to assess risks to human-health from the consumption of shellfish with HMs. C. concholepas can be considered as a biomonitor to study metal(loid)s on the Chilean coast.


Assuntos
Gastrópodes , Metais Pesados , Animais , Humanos , Metais Pesados/análise , Chile , Cádmio/análise , Monitoramento Ambiental/métodos , Medição de Risco
2.
Environ Sci Pollut Res Int ; 30(12): 33018-33039, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36471151

RESUMO

The high-Andean mountain of northern Chile host numerous water systems that is in risk due to increased mining activities. Total and dissolved Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn in water, and Cd, Cu, Fe, Ni, Pb, Zn, As, Mo, Al, and V in sediments of 21 aquatic systems (rivers, saline lakes, salt flats), were studied. The presence of Pb, Cd, and As in waters and sediments could be explained, in part, by mining activities. Waters are not suitable for human consumption or irrigation due to high content of Cu and As and high pH that exceed Chilean water quality guideline values. The use of different background reference values influences noticeably the conclusion related to environmental quality of sediments, measured with different environmental indexes. The local geological background suggest that Cd, Mo, Pb, and As generate some degree of contamination, while the use of unpolluted systems as background suggest that all metals measured in sediments represent a low contamination risk. The use of background values of local unpolluted systems seems to be more realistic than geological formation or Upper Continental Crust reference values to assess the environmental condition. The ecological risk assessment suggests that Cd and As are threat for communities living in these aquatic environments. However, these systems support abundant wildlife, developing unique extreme ecosystems with great potential for non-consumptive use such as special interest tourism and conservation.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Metais Pesados/análise , Ecossistema , Chile , Cádmio , Chumbo , Sedimentos Geológicos/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Medição de Risco , China
3.
Front Microbiol ; 13: 1020491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726571

RESUMO

Taxonomic and functional microbial communities may respond differently to anthropogenic coastal impacts, but ecological quality monitoring assessments using environmental DNA and RNA (eDNA/eRNA) in response to pollution are poorly understood. In the present study, we investigated the utility of the co-occurrence network approach's to comprehensively explore both structure and potential functions of benthic marine microbial communities and their responses to Cu and Fe fractioning from two sediment deposition coastal zones of northern Chile via 16S rRNA gene metabarcoding. The results revealed substantial differences in the microbial communities, with the predominance of two distinct module hubs based on study zone. This indicates that habitat influences microbial co-occurrence networks. Indeed, the discriminant analysis allowed us to identify keystone taxa with significant differences in eDNA and eRNA comparison between sampled zones, revealing that Beggiatoaceae, Carnobacteriaceae, and Nitrosococcaceae were the primary representatives from Off Loa, whereas Enterobacteriaceae, Corynebacteriaceae, Latescibacteraceae, and Clostridiaceae were the families responsible for the observed changes in Mejillones Bay. The quantitative evidence from the multivariate analyses supports that the benthic microbial assemblages' features were linked to specific environments associated with Cu and Fe fractions, mainly in the Bay. Furthermore, the predicted functional microbial structure suggested that transporters and DNA repair allow the communities to respond to metals and endure the interacting variable environmental factors like dissolved oxygen, temperature, and salinity. Moreover, some active taxa recovered are associated with anthropogenic impact, potentially harboring antibiotic resistance and other threats in the coastal zone. Overall, the method of scoping eRNA in parallel with eDNA applied here has the capacity to significantly enhance the spatial and functional understanding of real-time microbial assemblages and, in turn, would have the potential to increase the acuity of biomonitoring programs key to responding to immediate management needs for the marine environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA