Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 849, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040703

RESUMO

Understanding the molecular mechanisms underlying frontotemporal dementia (FTD) is essential for the development of successful therapies. Systematic studies on human post-mortem brain tissue of patients with genetic subtypes of FTD are currently lacking. The Risk and Modyfing Factors of Frontotemporal Dementia (RiMod-FTD) consortium therefore has generated a multi-omics dataset for genetic subtypes of FTD to identify common and distinct molecular mechanisms disturbed in disease. Here, we present multi-omics datasets generated from the frontal lobe of post-mortem human brain tissue from patients with mutations in MAPT, GRN and C9orf72 and healthy controls. This data resource consists of four datasets generated with different technologies to capture the transcriptome by RNA-seq, small RNA-seq, CAGE-seq, and methylation profiling. We show concrete examples on how to use the resulting data and confirm current knowledge about FTD and identify new processes for further investigation. This extensive multi-omics dataset holds great value to reveal new research avenues for this devastating disease.


Assuntos
Demência Frontotemporal , Multiômica , Humanos , Lobo Frontal , Demência Frontotemporal/genética , Mutação
2.
Cell Rep ; 39(10): 110913, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35675776

RESUMO

An intronic (G4C2)n expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal dementia primarily through gain-of-function mechanisms: the accumulation of sense and antisense repeat RNA foci and dipeptide repeat (DPR) proteins (poly-GA/GP/GR/PA/PR) translated from repeat RNA. To therapeutically block this pathway, we screen a library of 1,430 approved drugs and known bioactive compounds in patient-derived induced pluripotent stem cell-derived neurons (iPSC-Neurons) for inhibitors of DPR expression. The clinically used guanosine/cytidine analogs decitabine, entecavir, and nelarabine reduce poly-GA/GP expression, with decitabine being the most potent. Hit compounds nearly abolish sense and antisense RNA foci and reduce expression of the repeat-containing nascent C9orf72 RNA transcript and its mature mRNA with minimal effects on global gene expression, suggesting that they specifically act on repeat transcription. Importantly, decitabine treatment reduces (G4C2)n foci and DPRs in C9orf72 BAC transgenic mice. Our findings suggest that nucleoside analogs are a promising compound class for therapeutic development in C9orf72 repeat-expansion-associated disorders.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Células-Tronco Pluripotentes Induzidas , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA , Decitabina/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Neurônios/metabolismo , Nucleosídeos/metabolismo , RNA Antissenso/metabolismo
3.
J Vis Exp ; (162)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32831313

RESUMO

Manual culture and differentiation protocols for human induced pluripotent stem cells (hiPSC) are difficult to standardize, show high variability and are prone to spontaneous differentiation into unwanted cell types. The methods are labor-intensive and are not easily amenable to large-scale experiments. To overcome these limitations, we developed an automated cell culture system coupled to a high-throughput imaging system and implemented protocols for maintaining multiple hiPSC lines in parallel and neuronal differentiation. We describe the automation of a short-term differentiation protocol using Neurogenin-2 (NGN2) over-expression to produce hiPSC-derived cortical neurons within 6‒8 days, and the implementation of a long-term differentiation protocol to generate hiPSC-derived midbrain dopaminergic (mDA) neurons within 65 days. Also, we applied the NGN2 approach to a small molecule-derived neural precursor cells (smNPC) transduced with GFP lentivirus and established a live-cell automated neurite outgrowth assay. We present an automated system with protocols suitable for routine hiPSC culture and differentiation into cortical and dopaminergic neurons. Our platform is suitable for long term hands-free culture and high-content/high-throughput hiPSC-based compound, RNAi and CRISPR/Cas9 screenings to identify novel disease mechanisms and drug targets.


Assuntos
Técnicas de Cultura de Células/métodos , Córtex Cerebral/citologia , Neurônios Dopaminérgicos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Automação , Dióxido de Carbono , Contagem de Células , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Processamento de Imagem Assistida por Computador , Mesencéfalo/citologia , Células-Tronco Neurais/citologia , Crescimento Neuronal , Interface Usuário-Computador
4.
Stem Cell Reports ; 15(1): 22-37, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32559460

RESUMO

Neurons differentiated from induced pluripotent stem cells (iPSCs) typically show regular spiking and synaptic activity but lack more complex network activity critical for brain development, such as periodic depolarizations including simultaneous involvement of glutamatergic and GABAergic neurotransmission. We generated human iPSC-derived neurons exhibiting spontaneous oscillatory activity after cultivation of up to 6 months, which resembles early oscillations observed in rodent neurons. This behavior was found in neurons generated using a more "native" embryoid body protocol, in contrast to a "fast" protocol based on NGN2 overexpression. A comparison with published data indicates that EB-derived neurons reach the maturity of neurons of the third trimester and NGN2-derived neurons of the second trimester of human gestation. Co-culturing NGN2-derived neurons with astrocytes only led to a partial compensation and did not reliably induce complex network activity. Our data will help selection of the appropriate iPSC differentiation assay to address specific questions related to neurodevelopmental disorders.


Assuntos
Diferenciação Celular , Sistema Nervoso/crescimento & desenvolvimento , Neurônios/citologia , Sinapses/metabolismo , Proliferação de Células , Fenômenos Eletrofisiológicos , Corpos Embrioides/citologia , Humanos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo
5.
Genet Med ; 20(2): 240-249, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28749476

RESUMO

PurposeTo define the genetic spectrum and relative gene frequencies underlying clinical frontotemporal dementia (FTD).MethodsWe investigated the frequencies and mutations in neurodegenerative disease genes in 121 consecutive FTD subjects using an unbiased, combined sequencing approach, complemented by cerebrospinal fluid Aß1-42 and serum progranulin measurements. Subjects were screened for C9orf72 repeat expansions, GRN and MAPT mutations, and, if negative, mutations in other neurodegenerative disease genes, by whole-exome sequencing (WES) (n = 108), including WES-based copy-number variant (CNV) analysis.ResultsPathogenic and likely pathogenic mutations were identified in 19% of the subjects, including mutations in C9orf72 (n = 8), GRN (n = 7, one 11-exon macro-deletion) and, more rarely, CHCHD10, TARDBP, SQSTM1 and UBQLN2 (each n = 1), but not in MAPT or TBK1. WES also unraveled pathogenic mutations in genes not commonly linked to FTD, including mutations in Alzheimer (PSEN1, PSEN2), lysosomal (CTSF, 7-exon macro-deletion) and cholesterol homeostasis pathways (CYP27A1).ConclusionOur unbiased approach reveals a wide genetic spectrum underlying clinical FTD, including 11% of seemingly sporadic FTD. It unravels several mutations and CNVs in genes and pathways hitherto not linked to FTD. This suggests that clinical FTD might be the converging downstream result of a delicate susceptibility of frontotemporal brain networks to insults in various pathways.


Assuntos
Demência Frontotemporal/epidemiologia , Demência Frontotemporal/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Alelos , Biomarcadores , Proteína C9orf72/genética , Feminino , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/metabolismo , Frequência do Gene , Estudos de Associação Genética/métodos , Testes Genéticos , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Mutação , Doenças Neurodegenerativas/genética , Linhagem , Fenótipo , Análise de Sequência de DNA , Sequenciamento do Exoma
6.
Genome Biol ; 18(1): 22, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28137300

RESUMO

BACKGROUND: Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models. RESULTS: Assuming autosomal recessive inheritance, we identify 27 genes that have homozygous or compound heterozygous loss-of-function variants in PD cases. Definitive replication and confirmation of these findings were hindered by potential heterogeneity and by the rarity of the implicated alleles. We therefore looked for potential genetic interactions with established PD mechanisms. Following RNAi-mediated knockdown, 15 of the genes modulated mitochondrial dynamics in human neuronal cultures and four candidates enhanced α-synuclein-induced neurodegeneration in Drosophila. Based on complementary analyses in independent human datasets, five functionally validated genes-GPATCH2L, UHRF1BP1L, PTPRH, ARSB, and VPS13C-also showed evidence consistent with genetic replication. CONCLUSIONS: By integrating human genetic and functional evidence, we identify several PD susceptibility gene candidates for further investigation. Our approach highlights a powerful experimental strategy with broad applicability for future studies of disorders with complex genetic etiologies.


Assuntos
Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doença de Parkinson/genética , Análise de Sequência de DNA/métodos , alfa-Sinucleína/genética , Adolescente , Adulto , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Estudos de Casos e Controles , Células Cultivadas , Criança , Modelos Animais de Doenças , Drosophila melanogaster/genética , Exoma , Humanos , Pessoa de Meia-Idade , Interferência de RNA , Adulto Jovem
7.
Acta Neuropathol Commun ; 4(1): 37, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27079381

RESUMO

A non-coding hexanucleotide repeat expansion (HRE) in C9orf72 is a common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) acting through a loss of function mechanism due to haploinsufficiency of C9orf72 or a gain of function mediated by aggregates of bidirectionally transcribed HRE-RNAs translated into di-peptide repeat (DPR) proteins. To fully understand regulation of C9orf72 expression we surveyed the C9orf72 locus using Cap Analysis of Gene Expression sequence data (CAGEseq). We observed C9orf72 was generally lowly expressed with the exception of a subset of myeloid cells, particularly CD14+ monocytes that showed up to seven fold higher expression as compared to central nervous system (CNS) and other tissues. The expression profile at the C9orf72 locus showed a complex architecture with differential expression of the transcription start sites (TSSs) for the annotated C9orf72 transcripts between myeloid and CNS tissues suggesting cell and/or tissue specific functions. We further detected novel TSSs in both the sense and antisense strand at the C9orf72 locus and confirmed their existence in brain tissues and CD14+ monocytes. Interestingly, our experiments showed a consistent decrease of C9orf72 coding transcripts not only in brain tissue and monocytes from C9orf72-HRE patients, but also in brains from MAPT and GRN mutation carriers together with an increase in antisense transcripts suggesting these could play a role in regulation of C9orf72. We found that the non-HRE related expression changes cannot be explained by promoter methylation but by the presence of the C9orf72-HRE risk haplotype and unknown functional interactions between C9orf72, MAPT and GRN.


Assuntos
Sistema Nervoso Central/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação/genética , Células Mieloides/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteínas tau/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteína C9orf72 , Bases de Dados Factuais/normas , Bases de Dados Factuais/estatística & dados numéricos , Demência Frontotemporal/metabolismo , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Progranulinas
8.
BMC Microbiol ; 15: 165, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26285820

RESUMO

BACKGROUND: The phytohormone indole-3-acetic acid (IAA) is widely distributed among plant-associated bacteria. Certain strains of the Pseudomonas syringae complex can further metabolize IAA into a less biologically active amino acid conjugate, 3-indole-acetyl-ε-L-lysine, through the action of the iaaL gene. In P. syringae and Pseudomonas savastanoi strains, the iaaL gene is found in synteny with an upstream gene, here called matE, encoding a putative MATE family transporter. In P. syringae pv. tomato (Pto) DC3000, a pathogen of tomato and Arabidopsis plants, the HrpL sigma factor controls the expression of a suite of virulence-associated genes via binding to hrp box promoters, including that of the iaaL gene. However, the significance of HrpL activation of the iaaL gene in the virulence of Pto DC3000 is still unclear. RESULTS: A conserved hrp box motif is found upstream of the iaaL gene in the genomes of P. syringae strains. However, although the promoter region of matE is only conserved in genomospecies 3 of this bacterial group, we showed that this gene also belongs to the Pto DC3000 HrpL regulon. We also demonstrated that the iaaL gene is transcribed both independently and as part of an operon with matE in this pathogen. Deletion of either the iaaL or the matE gene resulted in reduced fitness and virulence of Pto DC3000 in tomato plants. In addition, we used multicolor fluorescence imaging to visualize the responses of tomato plants to wild-type Pto DC3000 and to its ΔmatE and ΔiaaL mutants. Activation of secondary metabolism prior to the development of visual symptoms was observed in tomato leaves after bacterial challenges with all strains. However, the observed changes were strongest in plants challenged by the wild-type strain, indicating lower activation of secondary metabolism in plants infected with the ΔmatE or ΔiaaL mutants. CONCLUSIONS: Our results provide new evidence for the roles of non-type III effector genes belonging to the Pto DC3000 HrpL regulon in virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Doenças das Plantas/microbiologia , Pseudomonas syringae/patogenicidade , Regulon , Fator sigma/metabolismo , Solanum lycopersicum/microbiologia , Fatores de Virulência/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Pseudomonas syringae/genética , Fator sigma/genética , Virulência , Fatores de Virulência/genética
9.
Front Microbiol ; 5: 403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177316

RESUMO

Replication slippage or slipped-strand mispairing involves the misalignment of DNA strands during the replication of repeated DNA sequences, and can lead to genetic rearrangements such as microsatellite instability. Here, we show that PolB and PolD replicative DNA polymerases from the archaeal model Pyrococcus abyssi (Pab) slip in vitro during replication of a single-stranded DNA template carrying a hairpin structure and short direct repeats. We find that this occurs in both their wild-type (exo+) and exonuclease deficient (exo-) forms. The slippage behavior of PabPolB and PabPolD, probably due to limited strand displacement activity, resembles that observed for the high fidelity P. furiosus (Pfu) DNA polymerase. The presence of PabPCNA inhibited PabPolB and PabPolD slippage. We propose a model whereby PabPCNA stimulates strand displacement activity and polymerase progression through the hairpin, thus permitting the error-free replication of repetitive sequences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...