Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Clin Invest ; 132(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35900863

RESUMO

The vast majority of people with cystic fibrosis (CF) are now eligible for CF transmembrane regulator (CFTR) modulator therapy. The remaining individuals with CF harbor premature termination codons (PTCs) or rare CFTR variants with limited treatment options. Although the clinical modulator response can be reliably predicted using primary airway epithelial cells, primary cells carrying rare CFTR variants are scarce. To overcome this obstacle, cell lines can be created by overexpression of mouse Bmi-1 and human TERT (hTERT). Using this approach, we developed 2 non-CF and 6 CF airway epithelial cell lines, 3 of which were homozygous for the W1282X PTC variant. The Bmi-1/hTERT cell lines recapitulated primary cell morphology and ion transport function. The 2 F508del-CFTR cell lines responded robustly to CFTR modulators, which was mirrored in the parent primary cells and in the cell donors' clinical response. Cereblon E3 ligase modulators targeting eukaryotic release factor 3a (eRF3a) rescued W1282X-CFTR function to approximately 20% of WT levels and, when paired with G418, rescued G542X-CFTR function to approximately 50% of WT levels. Intriguingly, eRF3a degraders also diminished epithelial sodium channel (ENaC) function. These studies demonstrate that Bmi-1/hTERT cell lines faithfully mirrored primary cell responses to CFTR modulators and illustrate a therapeutic approach to rescue CFTR nonsense mutations.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Fatores de Terminação de Peptídeos/metabolismo , Animais , Linhagem Celular , Códon sem Sentido , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Transporte de Íons/genética , Camundongos , Mutação
2.
Br J Pharmacol ; 175(14): 2926-2939, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29791744

RESUMO

BACKGROUND AND PURPOSE: Pharmacological agents that either inhibit or enhance flux of ions through voltage-gated sodium (Nav ) channels may provide opportunities for treatment of human health disorders. During studies to characterize agents that modulate Nav 1.3 function, we identified a compound that appears to exhibit both enhancement and inhibition of sodium ion conduction that appeared to be dependent on the gating state that the channel was in. The objective of the current study was to determine if these different modulatory effects are mediated by the same or distinct interactions with the channel. EXPERIMENTAL APPROACH: Electrophysiology and site-directed mutation were used to investigate the effects of PF-06526290 on Nav channel function. KEY RESULTS: PF-06526290 greatly slows inactivation of Nav channels in a subtype-independent manner. However, upon prolonged depolarization to induce inactivation, PF-06526290 becomes a Nav subtype-selective inhibitor. Mutation of the domain 4 voltage sensor modulates inhibition of Nav 1.3 or Nav 1.7 channels by PF-06526290 but has no effect on PF-06526290 mediated slowing of inactivation. CONCLUSIONS AND IMPLICATIONS: These findings suggest that distinct interactions may underlie the two modes of Nav channel modulation by PF-06526290 and that a single compound can affect sodium channel function in several ways.


Assuntos
Sulfonamidas/farmacologia , Tiazóis/farmacologia , Agonistas do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Canais de Sódio Disparados por Voltagem/fisiologia , Animais , Células CHO , Cricetulus , Gânglios Espinais , Células HEK293 , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
3.
ACS Med Chem Lett ; 9(2): 125-130, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29456800

RESUMO

Inhibitors of the renal outer medullary potassium channel (ROMK) show promise as novel mechanism diuretics, with potentially lower risk of diuretic-induced hypokalemia relative to current thiazide and loop diuretics. Here, we report the identification of a novel series of 3-sulfamoylbenzamide ROMK inhibitors. Starting from HTS hit 4, this series was optimized to provide ROMK inhibitors with good in vitro potencies and well-balanced ADME profiles. In contrast to previously reported small-molecule ROMK inhibitors, members of this series were demonstrated to be highly selective for inhibition of human over rat ROMK and to be insensitive to the N171D pore mutation that abolishes inhibitory activity of previously reported ROMK inhibitors.

4.
Br J Pharmacol ; 175(12): 2272-2283, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29150838

RESUMO

BACKGROUND AND PURPOSE: TREK two-pore-domain potassium (K2P ) channels play a critical role in regulating the excitability of somatosensory nociceptive neurons and are important mediators of pain perception. An understanding of the roles of TREK channels in pain perception and, indeed, in other pathophysiological conditions, has been severely hampered by the lack of potent and/or selective activators and inhibitors. In this study, we describe a new, selective opener of TREK channels, GI-530159. EXPERIMENTAL APPROACH: The effect of GI-530159 on TREK channels was demonstrated using 86 Rb efflux assays, whole-cell and single-channel patch-clamp recordings from recombinant TREK channels. The expression of K2P 2.1 (TREK1), K2P 10.1 (TREK2) and K2P 4.1 (TRAAK) channels was determined using transcriptome analysis from single dorsal root ganglion (DRG) cells. Current-clamp recordings from cultured rat DRG neurons were used to measure the effect of GI-530159 on neuronal excitability. KEY RESULTS: For recombinant human TREK1 channels, GI-530159 had similar low EC50 values in Rb efflux experiments and electrophysiological recordings. It activated TREK2 channels, but it had no detectable action on TRAAK channels nor any significant effect on other K channels tested. Current-clamp recordings from cultured rat DRG neurones showed that application of GI-530159 at 1 µM resulted in a significant reduction in firing frequency and a small hyperpolarization of resting membrane potential. CONCLUSIONS AND IMPLICATIONS: This study provides pharmacological evidence for the presence of mechanosensitive TREK K2P channels in sensory neurones and suggests that development of selective K2P channel openers like GI-530159 could aid in the development of novel analgesic agents. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Assuntos
Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Canais de Potássio de Domínios Poros em Tandem/agonistas , Animais , Células CHO , Linhagem Celular , Cricetulus , Relação Dose-Resposta a Droga , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Estrutura Molecular , Neurônios/metabolismo , Ratos , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 27(21): 4805-4811, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029933

RESUMO

The discovery and selection of a highly potent and selective NaV1.7 inhibitor PF-06456384, designed specifically for intravenous infusion, is disclosed. Extensive in vitro pharmacology and ADME profiling followed by in vivo preclinical PK and efficacy model data are discussed. A proposed protein-ligand binding mode for this compound is also provided to rationalise the high levels of potency and selectivity over inhibition of related sodium channels. To further support the proposed binding mode, potent conjugates are described which illustrate the potential for development of chemical probes to enable further target evaluation.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7/química , Piperidinas/química , Piridinas/química , Sulfonamidas/química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química , Animais , Sítios de Ligação , Cães , Meia-Vida , Hepatócitos/metabolismo , Humanos , Infusões Intravenosas , Concentração Inibidora 50 , Camundongos , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Dor/tratamento farmacológico , Dor/patologia , Piperidinas/farmacocinética , Piperidinas/uso terapêutico , Ligação Proteica , Estrutura Terciária de Proteína , Piridinas/farmacocinética , Piridinas/uso terapêutico , Ratos , Relação Estrutura-Atividade , Sulfonamidas/farmacocinética , Sulfonamidas/uso terapêutico , Tiadiazóis , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacocinética , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
6.
PLoS One ; 11(8): e0161450, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27556810

RESUMO

The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with ß1/ß2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA) binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799) which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N) resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.


Assuntos
Expressão Gênica , Canal de Sódio Disparado por Voltagem NAV1.9/genética , Canal de Sódio Disparado por Voltagem NAV1.9/metabolismo , Sequência de Aminoácidos , Anestésicos Locais/química , Anestésicos Locais/farmacologia , Animais , Sítios de Ligação , Células HEK293 , Humanos , Concentração Inibidora 50 , Ativação do Canal Iônico/efeitos dos fármacos , Lisina/química , Lisina/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Modelos Moleculares , Conformação Molecular , Canal de Sódio Disparado por Voltagem NAV1.9/química , Ligação Proteica , Ratos , Agonistas de Canais de Sódio/química , Agonistas de Canais de Sódio/farmacologia , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia
7.
PLoS One ; 11(4): e0152405, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050761

RESUMO

Human genetic studies show that the voltage gated sodium channel 1.7 (Nav1.7) is a key molecular determinant of pain sensation. However, defining the Nav1.7 contribution to nociceptive signalling has been hampered by a lack of selective inhibitors. Here we report two potent and selective arylsulfonamide Nav1.7 inhibitors; PF-05198007 and PF-05089771, which we have used to directly interrogate Nav1.7's role in nociceptor physiology. We report that Nav1.7 is the predominant functional TTX-sensitive Nav in mouse and human nociceptors and contributes to the initiation and the upstroke phase of the nociceptor action potential. Moreover, we confirm a role for Nav1.7 in influencing synaptic transmission in the dorsal horn of the spinal cord as well as peripheral neuropeptide release in the skin. These findings demonstrate multiple contributions of Nav1.7 to nociceptor signalling and shed new light on the relative functional contribution of this channel to peripheral and central noxious signal transmission.


Assuntos
Axônios/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Potenciais de Ação , Animais , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Técnicas de Patch-Clamp , Éteres Fenílicos/farmacologia , Sulfonamidas/farmacologia
8.
Br J Pharmacol ; 172(20): 4905-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26220736

RESUMO

BACKGROUND AND PURPOSE: Aryl sulfonamide Nav 1.3 or Nav 1.7 voltage-gated sodium (Nav ) channel inhibitors interact with the Domain 4 voltage sensor domain (D4 VSD). During studies to better understand the structure-activity relationship of this interaction, an additional mode of channel modulation, specifically slowing of inactivation, was revealed by addition of a single methyl moiety. The objective of the current study was to determine if these different modulatory effects are mediated by the same or distinct interactions with the channel. EXPERIMENTAL APPROACH: Electrophysiology and site-directed mutation were used to compare the effects of PF-06526290 and its desmethyl analogue PF-05661014 on Nav channel function. KEY RESULTS: PF-05661014 selectively inhibits Nav 1.3 versus Nav 1.7 currents by stabilizing inactivated channels via interaction with D4 VSD. In contrast, PF-06526290, which differs from PF-05661014 by a single methyl group, exhibits a dual effect. It greatly slows inactivation of Nav channels in a subtype-independent manner. However, upon prolonged depolarization to induce inactivation, PF-06526290 becomes a Nav subtype selective inhibitor similar to PF-05661014. Mutation of the D4 VSD modulates inhibition of Nav 1.3 or Nav 1.7 by both PF-05661014 and PF-06526290, but has no effect on the inactivation slowing produced by PF-06526290. This finding, along with the absence of functional inhibition of PF-06526290-induced inactivation slowing by PF-05661014, suggests that distinct interactions underlie the two modes of Nav channel modulation. CONCLUSIONS AND IMPLICATIONS: Addition of a methyl group to a Nav channel inhibitor introduces an additional mode of gating modulation, implying that a single compound can affect sodium channel function in multiple ways.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.3/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/fisiologia , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/fisiologia , Sulfonamidas/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Células CHO , Cricetulus , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/fisiologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Metilação , Camundongos , Mutagênese Sítio-Dirigida , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/fisiologia , Bloqueadores dos Canais de Sódio/química , Canais de Sódio/genética , Relação Estrutura-Atividade , Sulfonamidas/química
9.
Proc Natl Acad Sci U S A ; 110(29): E2724-32, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818614

RESUMO

Voltage-gated sodium (Nav) channels play a fundamental role in the generation and propagation of electrical impulses in excitable cells. Here we describe two unique structurally related nanomolar potent small molecule Nav channel inhibitors that exhibit up to 1,000-fold selectivity for human Nav1.3/Nav1.1 (ICA-121431, IC50, 19 nM) or Nav1.7 (PF-04856264, IC50, 28 nM) vs. other TTX-sensitive or resistant (i.e., Nav1.5) sodium channels. Using both chimeras and single point mutations, we demonstrate that this unique class of sodium channel inhibitor interacts with the S1-S4 voltage sensor segment of homologous Domain 4. Amino acid residues in the "extracellular" facing regions of the S2 and S3 transmembrane segments of Nav1.3 and Nav1.7 seem to be major determinants of Nav subtype selectivity and to confer differences in species sensitivity to these inhibitors. The unique interaction region on the Domain 4 voltage sensor segment is distinct from the structural domains forming the channel pore, as well as previously characterized interaction sites for other small molecule inhibitors, including local anesthetics and TTX. However, this interaction region does include at least one amino acid residue [E1559 (Nav1.3)/D1586 (Nav1.7)] that is important for Site 3 α-scorpion and anemone polypeptide toxin modulators of Nav channel inactivation. The present study provides a potential framework for identifying subtype selective small molecule sodium channel inhibitors targeting interaction sites away from the pore region.


Assuntos
Acetamidas/farmacologia , Fenômenos Eletrofisiológicos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Tiazóis/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Motivos de Aminoácidos/genética , Sítios de Ligação/genética , Células HEK293 , Humanos , Concentração Inibidora 50 , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Técnicas de Patch-Clamp , Alinhamento de Sequência
10.
Expert Opin Ther Pat ; 20(11): 1471-503, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20726689

RESUMO

IMPORTANCE OF THE FIELD: The human genome encodes at least 40 distinct voltage-gated potassium channel subtypes, which vary in regional expression, pharmacological and biophysical properties. Voltage-dependent potassium (Kv) channels help orchestrate many of the physiological and pathophysiological processes that promote and sometimes hinder the healthy functioning of our bodies. AREAS COVERED IN THIS REVIEW: This review summarizes patent and scientific literature reports from the past decade highlighting the opportunities that Kv channels offer for the development of new therapeutic interventions for a wide variety of disorders. WHAT THE READER WILL GAIN: The reader will gain an insight from an analysis of the associations of different Kv family members with disease processes, summary and evaluation of the development of therapeutically relevant pharmacological modulators of these channels, particularly focusing on proprietary agents being developed. TAKE HOME MESSAGE: Development of new drugs that target Kv channels continue to be of great interest but is proving to be challenging. Nevertheless, opportunities for Kv channel modulators to have an impact on a wide range of disorders in the future remain an exciting prospect.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Animais , Expressão Gênica , Humanos , Patentes como Assunto , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
11.
Mol Pharmacol ; 77(1): 58-68, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19805508

RESUMO

Human ether-à-go-go-related gene (hERG) potassium channel activity helps shape the cardiac action potential and influences its duration. In this study, we report the discovery of 3-nitro-N-(4-phenoxyphenyl) benzamide (ICA-105574), a potent and efficacious hERG channel activator with a unique mechanism of action. In whole-cell patch-clamp studies of recombinant hERG channels, ICA-105574 steeply potentiated current amplitudes more than 10-fold with an EC(50) value of 0.5 +/- 0.1 microM and a Hill slope (n(H)) of 3.3 +/- 0.2. The effect on hERG channels was confirmed because the known hERG channel blockers, N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl]-4-piperidinyl]carbonyl]phenyl]methanesulfonamide, 2HCl (E-4031) and BeKm-1, potently blocked the stimulatory effects of ICA-105574. The primary mechanism by which ICA-105574 potentiates hERG channel activity is by removing hERG channel inactivation, because ICA-105574 (2 microM) shifts the midpoint of the voltage-dependence of inactivation by >180 mV from -86 to +96 mV. In addition to the effects on inactivation, greater concentrations of ICA-105574 (3 microM) produced comparatively small hyperpolarizing shifts (up to 11 mV) in the voltage-dependence of channel activation and a 2-fold slowing of channel deactivation. In isolated guinea pig ventricular cardiac myocytes, ICA-105574 induced a concentration-dependent shortening of action potential duration (>70%, 3 microM) that could be prevented by preincubation with E-4031. In conclusion, we identified a novel agent that can prevent the inactivation of hERG potassium channels. This compound may provide a useful tool to further understand the mechanism by which hERG channels inactivate and affect cardiac function in addition to the role of hERG channels in other cell systems.


Assuntos
Canais de Potássio Éter-A-Go-Go/agonistas , Bloqueadores dos Canais de Potássio/antagonistas & inibidores , Potenciais de Ação/efeitos dos fármacos , Animais , Células Cultivadas , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Cobaias , Humanos , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Piridinas/farmacologia
12.
Expert Rev Clin Pharmacol ; 3(3): 385-96, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-22111618

RESUMO

The Ca(2+)-activated K(+) channel K(Ca)3.1 regulates membrane potential and calcium signaling in erythrocytes, activated T and B cells, macrophages, microglia, vascular endothelium, epithelia, and proliferating vascular smooth muscle cells and fibroblasts. K(Ca)3.1 has therefore been suggested as a potential therapeutic target for diseases such as sickle cell anemia, asthma, coronary restenosis after angioplasty, atherosclerosis, kidney fibrosis and autoimmunity, where activation and excessive proliferation of one or more of these cell types is involved in the pathology. This article will review the physiology and pharmacology of K(Ca)3.1 and critically examine the available preclinical and clinical data validating K(Ca)3.1 as a therapeutic target.

13.
Nat Rev Drug Discov ; 8(12): 982-1001, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19949402

RESUMO

The human genome encodes 40 voltage-gated K(+) channels (K(V)), which are involved in diverse physiological processes ranging from repolarization of neuronal and cardiac action potentials, to regulating Ca(2+) signalling and cell volume, to driving cellular proliferation and migration. K(V) channels offer tremendous opportunities for the development of new drugs to treat cancer, autoimmune diseases and metabolic, neurological and cardiovascular disorders. This Review discusses pharmacological strategies for targeting K(V) channels with venom peptides, antibodies and small molecules, and highlights recent progress in the preclinical and clinical development of drugs targeting the K(V)1 subfamily, the K(V)7 subfamily (also known as KCNQ), K(V)10.1 (also known as EAG1 and KCNH1) and K(V)11.1 (also known as HERG and KCNH2) channels.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Animais , Anticorpos/farmacologia , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Peptídeos/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peçonhas/farmacologia
14.
Anesth Analg ; 109(2): 632-40, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19608841

RESUMO

BACKGROUND: A non-opioid receptor-mediated inhibition of sodium channels in dorsal root ganglia (DRGs) by kappa-opioid receptor agonists (kappa-ORAs) has been reported to contribute to the antinociceptive actions in animals and humans. In this study, we examined structurally diverse kappa-ORAs for their abilities to inhibit tetrodotoxin-resistant (TTX-r) sodium channels in adult rat DRGs. METHODS: Whole-cell recordings of TTX-r sodium currents were performed on cultured adult rat DRGs. Structurally diverse kappa-ORAs were studied for their abilities to inhibit TTX-r sodium channels. RESULTS: The racemic kappa-ORA, (+/-)U50,488, inhibited TTX-r sodium currents in a voltage-dependent manner, yielding IC(50) values of 49 and 8 muM, at prepulse potentials of -100 and -40 mV, respectively. Furthermore, we found that both the kappa-ORA U50,488 active enantiomer 1S,2S U50,488 and the inactive enantiomer 1R,2R U50,488 were equally potent inhibitors of TTX-r sodium currents. Structurally related kappa-ORAs, such as BRL 52537 and ICI 199,441 also inhibited TTX-r sodium currents. However, sodium channel inhibition and kappa-opioid receptor agonism have a distinct structure-activity relationship because another kappa-ORA (ICI 204,488) was inactive versus TTX-r sodium channels. We further investigated the sodium channel block of this class of compounds by studying (+/-)U50,488. (+/-)U50,488 was found to preferentially interact with the slow inactivated state of TTX-r sodium channels and to retard recovery from inactivation. CONCLUSION: Our results suggest that TTX-r sodium channels can be inhibited by many kappa-ORAs via an opioid receptor-independent mechanism. Although the potency for sodium channel inhibition is typically much less than apparent affinity for opioid receptors, sodium channel block may still contribute to the antinociceptive effects of this class of compounds.


Assuntos
Analgésicos Opioides/farmacologia , Receptores Opioides kappa/agonistas , Células Receptoras Sensoriais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/farmacologia , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Analgésicos não Narcóticos/farmacologia , Animais , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Piperidinas/farmacologia , Pirrolidinas/farmacologia , Ratos , Relação Estrutura-Atividade
15.
16.
Bioorg Med Chem Lett ; 17(10): 2849-53, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17350840

RESUMO

A collection of aryl sulfonamido indanes based on the lead compound 1 was synthesized and evaluated for Kv1.5 inhibitory activity. Kv1.5 inhibitors have the potential to be atrium-selective agents for treatment of atrial fibrillation. (1R,2R)-1 has an IC(50) of 0.033microM against Kv1.5 and is selective against other cardiac ion channels, including hERG.


Assuntos
Canal de Potássio Kv1.5/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/farmacologia , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Animais , Indanos/síntese química , Indanos/farmacologia , Concentração Inibidora 50 , Canal de Potássio Kv1.5/metabolismo , Camundongos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
17.
Drug Discov Today ; 10(7): 485-93, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15809194

RESUMO

Over the past decade, significant advances have been made in understanding how water moves in to and out of cells. Investigators have used molecular and structural biological techniques to show that nature has evolved specialized water-conducting proteins called aquaporins, which traverse biological membranes in the cells of animals, plants and even bacteria. It is becoming increasingly clear that these aquaporins have fundamental roles in normal human physiology and pathophysiology. Consequently, aquaporins are attractive targets for the development of novel drug therapies for disorders that involve aberrant water movement, such as edema and kidney disease.


Assuntos
Aquaporinas/química , Aquaporinas/fisiologia , Desenho de Fármacos , Animais , Transporte Biológico , Água Corporal/metabolismo , Edema/tratamento farmacológico , Edema/metabolismo , Humanos , Rim/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Sistema Nervoso/metabolismo , Fenômenos Fisiológicos Oculares , Sistema Respiratório/metabolismo
18.
Br J Pharmacol ; 143(1): 81-90, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15302680

RESUMO

1. Openers of ATP-sensitive K(+) channels are of interest in several therapeutic indications including overactive bladder and other lower urinary tract disorders. This study reports on the in vitro and in vivo characterization of a structurally novel naphthylamide N-[2-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-naphthalen-1-yl]-acetamide (A-151892), as an opener of the ATP-sensitive potassium channels. 2. A-151892 was found to be a potent and efficacious potassium channel opener (KCO) as assessed by glibenclamide-sensitive whole-cell current and fluorescence-based membrane potential responses (-log EC(50)=7.63) in guinea-pig bladder smooth muscle cells. 3. Evidence for direct interaction with KCO binding sites was derived from displacement of binding of the 1,4-dihydropyridine opener [(125)I]A-312110. A-151892 displaced [(125)I]A-312110 binding to bladder membranes with a -log Ki value of 7.45, but lacked affinity against over 70 neurotransmitter receptor and ion channel binding sites. 4. In pig bladder strips, A-151892 suppressed phasic, carbachol-evoked and electrical field stimulus-evoked contractility in a glibenclamide-reversible manner with -log IC(50) values of 8.07, 7.33 and 7.02 respectively, comparable to that of the potencies of the prototypical cyanoguanidine KCO, P1075. The potencies to suppress contractions in thoracic aorta (-log IC(50)=7.81) and portal vein (-log IC(50)=7.98) were not substantially different from those observed for suppression of phasic contractility of the bladder smooth muscle. 5. In vivo, A-151892 was found to potently suppress unstable bladder contractions in obstructed models of unstable contractions in both pigs and rats with pED(35%) values of 8.05 and 7.43, respectively. 6. These results demonstrate that naphthylamide analogs exemplified by A-151892 are novel K(ATP) channel openers and may serve as chemotypes to exploit additional analogs with potential for the treatment of overactive bladder and lower urinary tract symptoms.


Assuntos
Acetamidas/farmacologia , Trifosfato de Adenosina/fisiologia , Naftalenos/farmacologia , Canais de Potássio/agonistas , Animais , Barbitúricos/metabolismo , Ligação Competitiva/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Vasos Sanguíneos/efeitos dos fármacos , Feminino , Guanidinas/farmacologia , Cobaias , Técnicas In Vitro , Radioisótopos do Iodo , Isoxazóis/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Técnicas de Patch-Clamp , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Suínos , Bexiga Urinária/efeitos dos fármacos
19.
Bioorg Med Chem Lett ; 13(10): 1741-4, 2003 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-12729655

RESUMO

We have discovered a novel series of N-[2-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethyl-ethyl)-naphthalen-1-yl] amides that are potent openers of K(ATP) channels and investigated structure-activity relationships (SAR) around the 1,2-disubstituted naphthyl core. A-151892, a prototype compound of this series, was found to be a potent and efficacious potassium channel opener in vitro in transfected Kir6.2/SUR2B cells and pig bladder strips. Additionally, A-151892 was found to selectively inhibit unstable bladder contractions in vivo in an obstructed rat model of myogenic bladder function


Assuntos
Amidas/síntese química , Amidas/farmacologia , Canais de Potássio/agonistas , Transportadores de Cassetes de Ligação de ATP/agonistas , Transportadores de Cassetes de Ligação de ATP/genética , Amidas/administração & dosagem , Animais , Pressão Sanguínea/efeitos dos fármacos , Linhagem Celular , Corantes Fluorescentes , Humanos , Hipertrofia/tratamento farmacológico , Masculino , Potenciais da Membrana/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Naftalenos/administração & dosagem , Naftalenos/síntese química , Naftalenos/farmacologia , Canais de Potássio/genética , Canais de Potássio Corretores do Fluxo de Internalização/agonistas , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ratos , Ratos Sprague-Dawley , Receptores de Droga/agonistas , Receptores de Droga/genética , Relação Estrutura-Atividade , Receptores de Sulfonilureias , Suínos , Transfecção , Bexiga Urinária/patologia
20.
Curr Protoc Pharmacol ; Chapter 11: Unit11.5, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-21956802

RESUMO

This unit describes protocols to aid investigators in determining the electrophysiological and pharmacological profile of heterologously expressed voltage or calcium-activated potassium channels belonging to the Kv1.x and SK/IK gene families. Protocols for data acquisition as well as analysis are provided.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Intermediária/fisiologia , Técnicas de Patch-Clamp/métodos , Superfamília Shaker de Canais de Potássio/fisiologia , Animais , Células CHO , Cricetinae , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/efeitos dos fármacos , Mesocricetus , Superfamília Shaker de Canais de Potássio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...