Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 78(3): 753-763, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30852638

RESUMO

Soil microbiota play important and diverse roles in agricultural crop nutrition and productivity. Yet, despite increasing efforts to characterize soil bacterial and fungal assemblages, it is challenging to disentangle the influences of sampling design on assessments of communities. Here, we sought to determine whether composite samples-often analyzed as a low cost and effort alternative to replicated individual samples-provide representative summary estimates of microbial communities. At three Minnesota agricultural research sites planted with an oat cover crop, we conducted amplicon sequencing for soil bacterial and fungal communities (16SV4 and ITS2) of replicated individual or homogenized composite soil samples. We compared soil microbiota from within and among plots and then among agricultural sites using both sampling strategies. Results indicated that single or multiple replicated individual samples, or a composite sample from each plot, were sufficient for distinguishing broad site-level macroecological differences among bacterial and fungal communities. Analysis of a single sample per plot captured only a small fraction of the distinct OTUs, diversity, and compositional variability detected in the analysis of multiple individual samples or a single composite sample. Likewise, composite samples captured only a fraction of the diversity represented by the six individual samples from which they were formed, and, on average, analysis of two or three individual samples offered greater compositional coverage (i.e., greater number of OTUs) than a single composite sample. We conclude that sampling design significantly impacts estimates of bacterial and fungal communities even in homogeneously managed agricultural soils, and our findings indicate that while either strategy may be sufficient for broad macroecological investigations, composites may be a poor substitute for replicated samples at finer spatial scales.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Microbiota , Microbiologia do Solo , Agricultura , Bactérias/classificação , Bactérias/genética , Fungos/classificação , Fungos/genética , Minnesota , Filogenia , Solo/química
2.
Front Mol Biosci ; 6: 151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993439

RESUMO

Soil nutrient amendments are recognized for their potential to improve microbial activity and biomass in the soil. However, the specific selective impacts of carbon amendments on indigenous microbiomes and their metabolic functions in agricultural soils remain poorly understood. We investigated the changes in soil chemical characteristics and phenotypes of Streptomyces communities following carbon amendments to soil. Mesocosms were established with soil from two field sites varying in soil organic matter content (low organic matter, LOM; high organic matter, HOM), that were amended at intervals over nine months with low or high dose solutions of glucose, fructose, malic acid, a mixture of these compounds, or water only (non-amended control). Significant shifts in soil chemical characteristics and antibiotic inhibitory capacities of indigenous Streptomyces were observed in response to carbon additions. All high dose carbon amendments consistently increased soil total carbon, while amendments with malic acid decreased soil pH. In LOM soils, higher frequencies of Streptomyces inhibitory phenotypes of the two plant pathogens, Streptomyces scabies and Fusarium oxysporum, were observed in response to soil carbon additions. Additionally, to determine if shifts in Streptomyces functional characteristics correlated with microbiome composition, we investigated whether shifts in functional characteristics of soil Streptomyces correlated with composition of soil bacterial communities, analyzed using 16S rRNA gene sequencing. Regardless of dose, community composition differed significantly among carbon-amended and non-amended soils from both sites. Carbon type and dose had significant effects on bacterial community composition in both LOM and HOM soils. Relationships among microbial community richness (observed species number), diversity, and soil characteristics varied among soils from different sites. These results suggest that manipulation of soil resource availability has the potential to selectively modify the functional capacities of soil microbiomes, and specifically to enhance pathogen inhibitory populations of high value to agricultural systems.

3.
Sci Adv ; 4(5): eaaq0942, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29806022

RESUMO

Current models of ecosystem development hold that low nitrogen availability limits the earliest stages of primary succession, but these models were developed from studies conducted in areas with temperate or wet climates. Global warming is now causing rapid glacial retreat even in inland areas with cold, dry climates, areas where ecological succession has not been adequately studied. We combine field and microcosm studies of both plant and microbial primary producers and show that phosphorus, not nitrogen, is the nutrient most limiting to the earliest stages of primary succession along glacial chronosequences in the Central Andes and central Alaska. We also show that phosphorus addition greatly accelerates the rate of succession for plants and for microbial phototrophs, even at the most extreme deglaciating site at over 5000 meters above sea level in the Andes of arid southern Peru. These results challenge the idea that nitrogen availability and a severe climate limit the rate of plant and microbial succession in cold-arid regions and will inform conservation efforts to mitigate the effects of global change on these fragile and threatened ecosystems.


Assuntos
Microbiologia Ambiental , Camada de Gelo , Nitrogênio , Fósforo , Plantas , Ecossistema , Peru
4.
Oecologia ; 185(3): 513-524, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28983721

RESUMO

A dominant paradigm in ecology is that plants are limited by nitrogen (N) during primary succession. Whether generalizable patterns of nutrient limitation are also applicable to metabolically and phylogenetically diverse soil microbial communities, however, is not well understood. We investigated if measures of N and phosphorus (P) pools inform our understanding of the nutrient(s) most limiting to soil microbial community activities during primary succession. We evaluated soil biogeochemical properties and microbial processes using two complementary methodological approaches-a nutrient addition microcosm experiment and extracellular enzyme assays-to assess microbial nutrient limitation across three actively retreating glacial chronosequences. Microbial respiratory responses in the microcosm experiment provided evidence for N, P and N/P co-limitation at Easton Glacier, Washington, USA, Puca Glacier, Peru, and Mendenhall Glacier, Alaska, USA, respectively, and patterns of nutrient limitation generally reflected site-level differences in soil nutrient availability. The activities of three key extracellular enzymes known to vary with soil N and P availability developed in broadly similar ways among sites, increasing with succession and consistently correlating with changes in soil total N pools. Together, our findings demonstrate that during the earliest stages of soil development, microbial nutrient limitation and activity generally reflect soil nutrient supply, a result that is broadly consistent with biogeochemical theory.


Assuntos
Ecossistema , Nitrogênio/química , Fósforo/química , Microbiologia do Solo , Solo/química , Alaska , Alimentos , Camada de Gelo , Peru , Filogenia , Washington
5.
Front Microbiol ; 7: 214, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26941732

RESUMO

Microorganisms are vital in mediating the earth's biogeochemical cycles; yet, despite our rapidly increasing ability to explore complex environmental microbial communities, the relationship between microbial community structure and ecosystem processes remains poorly understood. Here, we address a fundamental and unanswered question in microbial ecology: 'When do we need to understand microbial community structure to accurately predict function?' We present a statistical analysis investigating the value of environmental data and microbial community structure independently and in combination for explaining rates of carbon and nitrogen cycling processes within 82 global datasets. Environmental variables were the strongest predictors of process rates but left 44% of variation unexplained on average, suggesting the potential for microbial data to increase model accuracy. Although only 29% of our datasets were significantly improved by adding information on microbial community structure, we observed improvement in models of processes mediated by narrow phylogenetic guilds via functional gene data, and conversely, improvement in models of facultative microbial processes via community diversity metrics. Our results also suggest that microbial diversity can strengthen predictions of respiration rates beyond microbial biomass parameters, as 53% of models were improved by incorporating both sets of predictors compared to 35% by microbial biomass alone. Our analysis represents the first comprehensive analysis of research examining links between microbial community structure and ecosystem function. Taken together, our results indicate that a greater understanding of microbial communities informed by ecological principles may enhance our ability to predict ecosystem process rates relative to assessments based on environmental variables and microbial physiology.

6.
PLoS One ; 9(7): e102609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25050551

RESUMO

The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients--important drivers of plant succession--affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.


Assuntos
Microbiota/genética , Fertilizantes , Camada de Gelo , Tipagem Molecular , Peru , Filogenia , Microbiologia do Solo
7.
Ecology ; 95(3): 668-81, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24804451

RESUMO

Quantifying nutrient limitation of primary productivity is a fundamental task of terrestrial ecosystem ecology, but in a high carbon dioxide environment it is even more critical that we understand potential nutrient constraints on plant growth. Ecologists often manipulate nutrients with fertilizer to assess nutrient limitation, yet for a variety of reasons, nutrient fertilization experiments are either impractical or incapable of resolving ecosystem responses to some global changes. The challenges of conducting large, in situ fertilization experiments are magnified in forests, especially the high-diversity forests common throughout the lowland tropics. A number of methods, including fertilization experiments, could be seen as tools in a toolbox that ecologists may use to attempt to assess nutrient limitation, but there has been no compilation or synthetic discussion of those methods in the literature. Here, we group these methods into one of three categories (indicators of soil nutrient supply, organismal indicators of nutrient limitation, and lab-based experiments and nutrient depletions), and discuss some of the strengths and limitations of each. Next, using a case study, we compare nutrient limitation assessed using these methods to results obtained using large-scale fertilizations across the Hawaiian Archipelago. We then explore the application of these methods in high-diversity tropical forests. In the end, we suggest that, although no single method is likely to predict nutrient limitation in all ecosystems and at all scales, by simultaneously utilizing a number of the methods we describe, investigators may begin to understand nutrient limitation in complex and diverse ecosystems such as tropical forests. In combination, these methods represent our best hope for understanding nutrient constraints on the global carbon cycle, especially in tropical forest ecosystems.


Assuntos
Ecossistema , Fertilizantes , Solo , Árvores , Animais , Monitoramento Ambiental , Havaí , Projetos de Pesquisa , Fatores de Tempo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...