Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(13): 5910-5920, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325542

RESUMO

Electron transport through metal-organic frameworks by a hopping mechanism between discrete redox active sites is coupled to diffusion-migration of charge-balancing counter cations. Experimentally determined apparent diffusion coefficients, Deapp, that characterize this form of charge transport thus contain contributions from both processes. While this is well established for MOFs, microscopic descriptions of this process are largely lacking. Herein, we systematically lay out different scenarios for cation-coupled electron transfer processes that are at the heart of charge diffusion through MOFs. Through systematic variations of solvents and electrolyte cations, it is shown that the Deapp for charge migration through a PIZOF-type MOF, Zr(dcphOH-NDI) that is composed of redox-active naphthalenediimide (NDI) linkers, spans over 2 orders of magnitude. More importantly, however, the microscopic mechanisms for cation-coupled electron propagation are contingent on differing factors depending on the size of the cation and its propensity to engage in ion pairs with reduced linkers, either non-specifically or in defined structural arrangements. Based on computations and in agreement with experimental results, we show that ion pairing generally has an adverse effect on cation transport, thereby slowing down charge transport. In Zr(dcphOH-NDI), however, specific cation-linker interactions can open pathways for concerted cation-coupled electron transfer processes that can outcompete limitations from reduced cation flux.


Assuntos
Estruturas Metalorgânicas , Cátions , Transporte de Elétrons , Elétrons , Estruturas Metalorgânicas/química , Oxirredução
2.
J Am Chem Soc ; 143(21): 7991-7999, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34029060

RESUMO

[FeFe] hydrogenase (H2ase) enzymes are effective proton reduction catalysts capable of forming molecular dihydrogen with a high turnover frequency at low overpotential. The active sites of these enzymes are buried within the protein structures, and substrates required for hydrogen evolution (both protons and electrons) are shuttled to the active sites through channels from the protein surface. Metal-organic frameworks (MOFs) provide a unique platform for mimicking such enzymes due to their inherent porosity which permits substrate diffusion and their structural tunability which allows for the incorporation of multiple functional linkers. Herein, we describe the preparation and characterization of a redox-active PCN-700-based MOF (PCN = porous coordination network) that features both a biomimetic model of the [FeFe] H2ase active site as well as a redox-active linker that acts as an electron mediator, thereby mimicking the function of [4Fe4S] clusters in the enzyme. Rigorous studies on the dual-functionalized MOF by cyclic voltammetry (CV) reveal similarities to the natural system but also important limitations in the MOF-enzyme analogy. Most importantly, and in contrast to the enzyme, restrictions apply to the total concentration of reduced linkers and charge-balancing counter cations that can be accommodated within the MOF. Successive charging of the MOF results in nonideal interactions between linkers and restricted mobility of charge-compensating redox-inactive counterions. Consequently, apparent diffusion coefficients are no longer constant, and expected redox features in the CVs of the materials are absent. Such nonlinear effects may play an important role in MOFs for (electro)catalytic applications.

3.
Coord Chem Rev ; 4062020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499663

RESUMO

The electrochemical analysis of molecular catalysts for the conversion of bulk feedstocks into energy-rich clean fuels has seen dramatic advances in the last decade. More recently, increased attention has focused on the characterization of metal-organic frameworks (MOFs) containing well-defined redox and catalytically active sites, with the overall goal to develop structurally stable materials that are industrially relevant for large-scale solar fuel syntheses. Successful electrochemical analysis of such materials draws heavily on well-established homogeneous techniques, yet the nature of solid materials presents additional challenges. In this tutorial-style review, we cover the basics of electrochemical analysis of electroactive MOFs, including considerations of bulk stability, methods of attaching MOFs to electrodes, interpreting fundamental electrochemical data, and finally electrocatalytic kinetic characterization. We conclude with a perspective of some of the prospects and challenges in the field of electrocatalytic MOFs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...