Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 3110, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068947

RESUMO

The original version of this Article omitted the following from the Acknowledgements: 'J. Ma's primary affiliation is Shanghai Jiao Tong University.' This has been corrected in both the PDF and HTML versions of the Article.

2.
Nat Commun ; 9(1): 2666, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29991805

RESUMO

Magnetization plateaus in quantum magnets-where bosonic quasiparticles crystallize into emergent spin superlattices-are spectacular yet simple examples of collective quantum phenomena escaping classical description. While magnetization plateaus have been observed in a number of spin-1/2 antiferromagnets, the description of their magnetic excitations remains an open theoretical and experimental challenge. Here, we investigate the dynamical properties of the triangular-lattice spin-1/2 antiferromagnet Ba3CoSb2O9 in its one-third magnetization plateau phase using a combination of nonlinear spin-wave theory and neutron scattering measurements. The agreement between our theoretical treatment and the experimental data demonstrates that magnons behave semiclassically in the plateau in spite of the purely quantum origin of the underlying magnetic structure. This allows for a quantitative determination of Ba3CoSb2O9 exchange parameters. We discuss the implication of our results to the deviations from semiclassical behavior observed in zero-field spin dynamics of the same material and conclude they must have an intrinsic origin.

3.
Nature ; 540(7634): 559-562, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-27919078

RESUMO

A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

5.
Phys Rev Lett ; 116(14): 147201, 2016 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-27104722

RESUMO

We report on ultrasound and magnetization studies in three-dimensional, spin-dimerized Sr_{3}Cr_{2}O_{8} as a function of temperature and external magnetic field up to 61 T. It is well established [A. A. Aczel et al., Phys. Rev. Lett. 103, 207203 (2009)] that this system exhibits a magnonic-superfluid phase between 30 and 60 T and below 8 K. By mapping ultrasound and magnetization anomalies as a function of magnetic field and temperature we establish that this superfluid phase is embedded in a domelike phase regime of a high-temperature magnonic liquid extending up to 18 K. Compared to thermodynamic results, our study indicates that the magnonic liquid could be characterized by an Ising-like order but has lost the coherence of the transverse components.

6.
Rev Sci Instrum ; 86(2): 025110, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25725891

RESUMO

We describe the upgrade of the neutron resonance spin-echo setup at the cold neutron triple-axis spectrometer FLEXX at the BER II neutron source at the Helmholtz-Zentrum Berlin. The parameters of redesigned key components are discussed, including the radio frequency (RF) spin-flip coils, the magnetic shield, and the zero field coupling coils. The RF-flippers with larger beam windows allow for an improved neutron flux transfer from the source to the sample and further to the analyzer. The larger beam cross sections permit higher coil inclination angles and enable measurements on dispersive excitations with a larger slope of the dispersion. Due to the compact design of the spin-echo units in combination with the increased coil tilt angles, the accessible momentum-range in the Larmor diffraction mode is substantially enlarged. In combination with the redesigned components of the FLEXX spectrometer, including the guide, the S-bender polarizer, the double focusing monochromator, and a Heusler crystal analyzer, the count rate increased by a factor of 15.5, and the neutron beam polarization is enhanced. The improved performance extends the range of feasible experiments, both for inelastic scattering on excitation lifetimes in single crystals, and for high-resolution Larmor diffraction. The experimental characterization of the instrument components demonstrates the reliable performance of the new neutron resonance spin-echo option, now available for the scientific community at FLEXX.

7.
Phys Rev Lett ; 109(12): 127206, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005983

RESUMO

It is widely believed that magnetic excitations become increasingly incoherent as the temperature is raised due to random collisions which limit their lifetime. This picture is based on spin-wave calculations for gapless magnets in 2 and 3 dimensions and is observed experimentally as a symmetric Lorentzian broadening in energy. Here, we investigate a three-dimensional dimer antiferromagnet and find unexpectedly that the broadening is asymmetric-indicating that far from thermal decoherence, the excitations behave collectively like a strongly correlated gas. This result suggests that a temperature activated coherent state of quasiparticles is not confined to special cases like the highly dimerized spin-1/2 chain but is found generally in dimerized antiferromagnets of all dimensionalities and perhaps gapped magnets in general.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...