Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 106(10): 6951-6960, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37500437

RESUMO

Studies evaluating the crude protein (CP) supplementation strategies across the year for grazing cattle and its association with the enzymes involved in the urea cycle and muscle and mammary gland developments are scarce. Thus, we aimed to evaluate the effect of supplementation with different levels of CP on the expression of genes involved in the urea cycle and muscle and mammary gland development of Holstein × Gyr crossbreed heifers grazing intensively managed Brachiaria decumbens throughout the year. Thirty-eight heifers with average initial BW of 172.5 ± 11.15 kg (mean ± SE) and 8.2 ± 0.54 mo of age were randomly assigned to 1 of 4 treatments: 3 protein supplements (SUP) fed at 5g/kg of body weight, plus a control group (CON, non-supplemented animals). The supplement CP levels evaluated were: 12, 24, and 36%. The study was divided into 4 seasons: rainy, dry, rainy-dry transition (RDT), and dry-rainy transition (DRT). On the penultimate day of each season, ultrasound images of the carcass and mammary gland were taken. Five animals from each treatment were randomly chosen on the last day of each season, and liver and muscle tissue biopsies were performed. The target genes were the mammalian target of rapamycin (mTOR) and adenosine monophosphate-activated protein kinase (AMPK) in the muscle samples. Carbamoyl phosphate synthetase (CPS), ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASS), arginosuccinate lyase (ASL), and arginase (ARG) were evaluated in the liver samples. Data were analyzed using PROC GLIMMIX of the SAS with repeated measures. We observed a greater rib eye area (cm2) and fat thickness (mm) in SUP animals than in non-supplemented animals. However, we did not observe differences among SUP levels for both variables. No effects of supplementation were detected on mammary gland development. Nevertheless, seasonal effects were observed, where the RDT and dry season had the most and least accumulated fat in the mammary gland. In muscle, we observed greater expression of AMPK in non-supplemented animals than SUP animals. On the other hand, no differences were observed in gene expression between SUP and non-supplemented animals and among SUP animals for mTOR. Season affected both AMPK and mTOR; heifers had a greater AMPK gene expression on rainy than RDT. For mTOR, we observed greater gene expression in RDT and DRT than in rainy. No differences were observed among RDT, dry, and DRT, and between dry and rainy seasons for mTOR. We observed greater CPS, ASL, and ARG gene expression in SUP animals than in non-supplemented animals. Among SUP animals, supplement CP linearly affected CPS. In conclusion, the supplementation strategy did not affect mammary gland development and mTOR expression in muscle tissue. However, we observed a seasonal effect on mammary gland development and AMPK and mTOR expression. The CP supplementation increased the rib eye area and fat thickness, directly affecting AMPK expression in the muscle. Moreover, the CP supplementation increased urea cycle enzyme expression, indicating greater urea production in the liver.


Assuntos
Proteínas Quinases Ativadas por AMP , Suplementos Nutricionais , Bovinos , Animais , Feminino , Músculos , Ureia , Serina-Treonina Quinases TOR , Ração Animal/análise , Dieta/veterinária , Mamíferos
2.
J Dairy Sci ; 105(6): 5097-5108, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35282903

RESUMO

Milk fatty acid (FA) profile can be divided into (1) de novo (C4-C14) that are synthesized in the mammary gland; (2) preformed (≥C18) that are absorbed from blood and originate from mobilized adipose tissues or dietary fat; and (3) mixed (C16), which have both origins. Our objectives were to describe the FA profile, as predicted using Fourier transform mid-infrared spectroscopy, of bulk tank milk from automated milking system (AMS) farms and to assess the association of management and housing factors with the bulk tank milk composition and FA profile of those AMS farms. The data used were collected from 124 commercial Canadian Holstein dairy farms with AMS, located in the provinces of Ontario (n = 68) and Quebec (n = 56). The farms were visited once from April to September 2019, and information were collected on barn design and herd management practices. Information regarding individual cow milk yield (kg/d), days in milk, parity, and the number of milking cows were automatically collected by the AMS units on each farm. These data were extracted for the entire period that the bulk tank milk samples were monitored, from April 2019 to April 2020 in Quebec and from August 2019 to May 2020 in Ontario. Across herds, milk yield averaged (mean ± standard error) 35.9 ± 0.4 kg/d, with 3.97 ± 0.01% fat and 3.09 ± 0.01% protein, whereas FA profile averaged 26.2 ± 0.1, 33.1 ± 0.1, and 40.7 ± 0.2 g/100 g of FA for de novo, mixed, and preformed, respectively. The FA yield averaged 0.34 ± 0.01, 0.44 ± 0.01, and 0.54 ± 0.01 kg/d for de novo, mixed, and preformed, respectively. Multivariable regression models were used to associate herd-level housing factors and management practices with milk production, composition, and FA profile. Milk yield was positively associated with using a robot feed pusher (+2.1 kg/d) and the use of deep bedding (+2.6 kg/d). The use of a robot feed pusher, deep bedding, and greater stall raking frequency were positively associated with greater yield (kg/d) of de novo, mixed, preformed, and de novo + mixed FA. Use of deep bedding was negatively associated with concentration of fat, de novo FA, mixed FA, and de novo + mixed FA, expressed in grams per 100 g (%) of milk. A wider lying alley width (≥305 cm) was associated with a greater concentration (g/100 g of milk) of de novo and de novo + mixed FA. Greater frequency of partial mixed ration delivery (>2×/d vs. 1 and 2×/d) was positively associated with a greater proportion (g/100 g of FA) of de novo, mixed, and de novo + mixed FA and negatively associated with the proportion of preformed FA. Overall, these associations indicated that bulk tank FA profile can be used as a tool to monitor and adjust management and housing in AMS farms.


Assuntos
Indústria de Laticínios , Leite , Animais , Bovinos , Indústria de Laticínios/métodos , Fazendas , Ácidos Graxos/análise , Feminino , Análise de Fourier , Abrigo para Animais , Lactação , Leite/química , Ontário , Gravidez , Espectroscopia de Infravermelho com Transformada de Fourier/veterinária
3.
Animal ; 14(9): 1857-1866, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32248874

RESUMO

Nutrient requirements in cattle are dependent on physiological stage, breed and environmental conditions. In Holstein × Gyr crossbred dairy heifers, the lack of data remains a limiting factor for estimating energy and protein requirements. Thus, we aimed to estimate the energy and protein requirements of Holstein × Gyr crossbred heifers raised under tropical conditions. Twenty-two crossbred (½ Holstein × ½ Gyr) heifers with an average initial BW of 102.2 ± 3.4 kg and 3 to 4 months of age were used. To estimate requirements, the comparative slaughter technique was used: four animals were assigned to the reference group, slaughtered at the beginning of the experiment to estimate the initial empty BW (EBW) and composition of the animals that remained in the experiment. The remaining animals were randomized into three treatments based on targeted rates of BW gain: high (1.0 kg/day), low (0.5 kg/day) and close to maintenance (0.1 kg/day). At the end of the experiment, all animals were slaughtered to determine EBW, empty body gain (EBG) and body energy and protein contents. The linear regression parameters were estimated using PROC MIXED of SAS (version 9.4). Estimates of the parameters of non-linear regressions were adjusted through PROC NLIN of SAS using the Gauss-Newton method for parameter fit. The net requirements of energy for maintenance (NEm) and metabolizable energy for maintenance (MEm) were 0.303 and 0.469 MJ/EBW0.75 per day, respectively. The efficiency of use of MEm was 64.5%. The estimated equation to predict the net energy requirement for gain (NEg) was: NEg (MJ/day) = 0.299 × EBW0.75 × EBG0.601. The efficiency of use of ME for gain (kg) was 30.7%. The requirement of metabolizable protein for maintenance was 3.52 g/EBW0.75 per day. The equation to predict net protein requirement for gain (NPg) was: NPg (g/day) = 243.65 × EBW-0.091 × EBG. The efficiency of use of metabolizable protein for gain (k) was 50.8%. We observed noteworthy differences when comparing to ME and protein requirements of Holstein × Gyr crossbred heifers with other systems. In addition, we also observed differences in estimates for NEm, NEg, NPg, kg and k. Therefore, we propose that the equations generated in the present study should be used to estimate energy and protein requirements for Holstein × Gyr crossbred dairy heifers raised in tropical conditions in the post-weaning phase up to 185 kg of BW.


Assuntos
Doenças dos Bovinos , Ingestão de Energia , Necessidades Nutricionais , Ração Animal/análise , Animais , Composição Corporal , Peso Corporal , Bovinos/genética , Dieta , Metabolismo Energético , Feminino
4.
J Dairy Sci ; 102(4): 2973-2984, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30738689

RESUMO

International committees that have published nutrient requirements for dairy cattle have used data from mineral studies conducted in the 1920s to 1970s, and no study has reported data from animals less than 100 kg; therefore, there is a need to update mineral requirements for preweaned dairy calves. Thus, a meta-analysis was performed to estimate the mineral requirements of Ca, P, K, Mg, and Na for Holstein and Holstein × Gyr crossbred preweaned dairy calves using data from 5 studies developed at the Universidade Federal de Viçosa (Viçosa, MG, Brazil). A total of 210 calves were separated into 2 breeds: purebred Holstein calves (animals with a Holstein pedigree higher than 87.5%) and Holstein × Gyr crossbred calves (animals with a Holstein pedigree lower than 87.5%). The comparative slaughter technique was used to estimate animal body composition and empty body weight (EBW). Mineral requirements for maintenance were estimated by the regression between retained mineral and mineral intake, whereas mineral requirements for gain were obtained from the first derivative of the mineral content in the animal's body. In addition, breed effect was tested on the intercept and slope of the models. The effect of breed was not observed for all analyzed variables. Thus, net requirements for maintenance were 12.73, 11.81, 20.28, 3.50, and 6.37 mg/kg of EBW per day for Ca, P, K, Mg, and Na, respectively. Retention coefficients were 73.18, 65.20, 13.16, 29.55, and 24.28% for Ca, P, K, Mg, and Na, respectively. The following equations were determined to estimate net requirements for gain (NRG, g/d): NRG for Ca = 14.402 × EBW-0.139 × empty body gain (EBG); NRG for P = 5.849 × EBW-0.027 × EBG; NRG for K = 1.140 × EBW-0.048 × EBG; NRG for Mg = 0.603 × EBW-0.036 × EBG; and NRG for Na = 1.508 × EBW-0.045 × EBG. Due to the high variation between the data found in this study and in the available literature, we suggest that further studies should be conducted to evaluate the estimates of this study.


Assuntos
Ração Animal , Bovinos/fisiologia , Dieta/veterinária , Minerais , Necessidades Nutricionais , Animais , Composição Corporal , Peso Corporal , Brasil , Ingestão de Energia , Clima Tropical
5.
J Dairy Sci ; 100(4): 2603-2613, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161164

RESUMO

The objective of this study was to estimate the energy and protein requirements of crossbred (Holstein × Gyr) growing bulls. Twenty-four 10-mo-old bulls [initial body weight (BW) = 184 ± 23.4 kg] were used in a comparative slaughter trial. Six bulls were slaughtered at the beginning of the experiment as the reference group, to estimate initial empty body weight (EBW) and energy and protein contents of the remaining animals. The remaining bulls were assigned to a completely randomized design with 3 levels of dry matter intake and 6 replicates. The levels of dry matter intake were 1.2% of BW, 1.8% of BW, and ad libitum to target orts equal to 5% of the total amount that was fed. The remaining bulls were slaughtered at the end of the experiment. The bulls were fed a diet consisting of 59.6% corn silage and 40.4% concentrate on a dry matter basis. The equation that determined the relationship between EBW and BW was EBW = (0.861 ± 0.0031) × BW. The relationship between empty body gain (EBG) and average daily gain (ADG) was demonstrated by the following equation: EBG = (0.934 ± 0.0111) × ADG. Net energy for maintenance (NEM) was 74.8 ± 2.89 kcal/kg of EBW0.75 per day, and metabolizable energy for maintenance (MEM) was 120.8 kcal/kg of EBW0.75 per day. The detected efficiency of use of metabolizable energy for maintenance (km) was 61.9%. The equation used to estimate net energy for gain (NEG) was as follows: NEG = (0.049 ± 0.0011) × EBW0.75 × EBG0.729 ± 0.0532. The efficiency of use of metabolizable energy for gain (kg) was 35.7%. The metabolizable protein for maintenance (MPM) was 3.05 g/kg of BW0.75. The equation used to estimate net protein requirements for gain (NPG) = (87.138 ± 65.1378 × EBG) + [(40.436 ± 21.3640) × NEG]. The efficiency of use of metabolizable protein for gain (k) was 35.7%. We concluded that the estimates of energy and protein requirements presented herein are more appropriate than the National Research Council dairy cattle model and the Brazilian BR-CORTE system to balance the diets of crossbred (Holstein × Gyr) growing bulls.


Assuntos
Ração Animal , Necessidades Nutricionais , Animais , Composição Corporal , Peso Corporal , Bovinos , Dieta/veterinária , Ingestão de Energia , Metabolismo Energético , Masculino , Aumento de Peso
6.
J Dairy Sci ; 100(2): 1170-1178, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27939536

RESUMO

The objective was to quantify the energy and protein nutritional requirements of Holstein × Gyr crossbred preweaned dairy calves until 64 d of age. Thirty-nine Holstein × Gyr crossbred male calves with an average initial live weight (mean ± SEM; for all next values) of 36 ± 1.0 kg were used. Five calves were slaughtered at 4 d of life to estimate the animals' initial body composition (reference group). The remaining 34 calves were distributed in a completely randomized design in a 3 × 2 factorial arrangement consisting of 3 levels of milk (2, 4, or 8 L/d) and 2 levels of starter feed (presence or absence in diet). At 15 and 45 d of life, 4 animals from each treatment were subjected to digestibility trials with total collection of feces (for 72 h) and urine (for 24 h). At 64 d of age, all animals were slaughtered, their gastro-intestinal tract was washed to determine the empty body weight (EBW; kg), and their body tissues were sampled for subsequent analyses. The net energy requirement for maintenance was estimated using an exponential regression between metabolizable energy intake and heat production (both in Mcal/EBW0.75 per d) and was 74.3 ± 5.7 kcal/EBW0.75 per d, and was not affected by inclusion of starter feed in the diet. The metabolizable energy requirement for maintenance was determined at the point of zero energy retention in the body and was 105.2 ± 5.8 kcal/EBW0.75 per d. The net energy for gain was estimated using the EBW and the empty body gain (EBG; kg/d) as 0.0882 ± 0.0028 × EBW0.75 × EBG0.9050±0.0706. The metabolizable energy efficiency for gain (kg) of the milk was 57.4 ± 3.45%, and the kg of the starter feed was 39.3 ± 2.09%. The metabolizable protein requirement for maintenance was 3.52 ± 0.34 g/BW0.75 per d. The net protein required for each kilogram gained was estimated as 119.1 ± 32.9 × EBW0.0663±0.059. The metabolizable protein efficiency for gain was 77 ± 8.5% and was not affected by inclusion of starter feed in the diet. In conclusion, the energy efficiency for gain of milk is higher than that of starter and the net protein required per unit protein gain increases with empty body weight.


Assuntos
Ração Animal , Necessidades Nutricionais , Animais , Composição Corporal , Peso Corporal , Bovinos , Dieta/veterinária , Leite/metabolismo
7.
Trop Anim Health Prod ; 48(8): 1555-1560, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27557699

RESUMO

The objective of this study was to evaluate the performance and health of Holstein calves fed low or high milk supply (MSP) with or without symbiotic complex (SYM) supplementation, consisting of prebiotics, probiotics, and fibrolytic enzymes. Thirty-two Holstein calves with body weight (BW) of 34 ± 7 kg were distributed in a randomized block design in a 2 × 2 factorial arrangement. Treatments consisted of low and high MSP: 10 % of BW from 1st to 8th weeks after birth (low) and 20 % BW from 1st and 2nd weeks after birth, 15 % BW for the 3rd and 4th weeks after birth, and 10 % BW from 5th and 8th weeks after birth (high). Solid ration was supplied in addition to milk. Intake, ADG, diet digestibility, and fecal consistency index were evaluated. Low and high MSP groups tended (P < 0.10) to differ in calf growth, final BW (69 vs. 73 kg), post-weaning average weight gain (548 vs. 788 g/day), and final average weight gain (549 vs. 646 g/day) in low and high MSP calves, respectively. There was an interaction between MSP level and SYM on the digestibilities of dry matter (DM) and neutral detergent fiber (NDF) (P < 0.10). In the low MSP group, inclusion of SYM increased digestibility of DM (0.720 to 0.736 g/kg) and NDF (0.758 to 0.783 g/kg). The inclusion of SYM improved calf health (P < 0.10) with a fecal score of 0.31 compared to 0.42 without SYM. Milk-feeding level was an important factor in calf performance, while SYM supplementation improved diet digestibility and animal health.


Assuntos
Bovinos/crescimento & desenvolvimento , Dieta/veterinária , Comportamento Alimentar , Leite , Probióticos/administração & dosagem , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Peso Corporal , Brasil , Suplementos Nutricionais , Clima Tropical , Desmame , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...