Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 201: 740-748, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29547862

RESUMO

This study investigated the anodic oxidation of phenolic wastewater generated by cashew-nut processing industry (CNPI) using active (Ti/RuO2-TiO2) and inactive (boron doped diamond, BDD) anodes. During electrochemical treatment, various operating parameters were investigated, such as current density, chemical oxygen demand (COD), total phenols, O2 production, temperature, pH, as well as current efficiency and energy consumption. After electrolysis under optimized working conditions, samples were evaluated by chromatography and toxicological tests against L. sativa. When both electrode materials were compared under the same operating conditions, higher COD removal efficiency was achieved for BDD anode; achieving lower energy requirements when compared with the values estimated for Ti/RuO2-TiO2. The presence of Cl- in the wastewater promoted the electrogeneration of strong oxidant species as chlorine, hypochlorite and mainly hypochlorous acid, increasing the efficiency of degradation process. Regarding the temperature effect, BDD showed slower performances than those achieved for Ti/RuO2-TiO2. Chromatographic and phytotoxicity studies indicated formation of some by-products after electrolytic process, regardless of the anode evaluated, and phytotoxic action of the effluent. Results encourage the applicability of the electrochemical method as wastewater treatment process for the CNPI, reducing depuration time.


Assuntos
Diamante/química , Eletrólise/métodos , Fenóis/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Anacardium/química , Boro/química , Eletrodos , Eletrólise/instrumentação , Indústria Alimentícia , Lactuca/efeitos dos fármacos , Nozes/química , Oxirredução , Fenóis/toxicidade , Compostos de Rutênio/química , Titânio/química , Poluentes Químicos da Água/toxicidade , Purificação da Água/instrumentação
2.
Environ Sci Pollut Res Int ; 24(7): 6096-6105, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27495919

RESUMO

The yeast Saccharomyces cerevisiae, a microorganism with cell walls resistant to many types of treatments, was chosen as a model to study electrochemical disinfection process using dimensionally stable anodes (DSA). DSA electrodes with nominal composition of Ti/RuO2TiO2 and Ti/RuO2TiO2IrO2 were evaluated in 0.05 mol L-1 Na2SO4 containing yeast. The results showed inactivation about of 100 % of the microorganisms at Ti/RuO2TiO2 by applying 20 and 60 mA cm-2 after 120 min of electrolysis, while a complete inactivation at Ti/RuO2IrO2TiO2 electrode was achieved after 180 min at 60 mA cm-2. When chloride ions were added in the electrolyte solution, 100 % of the yeast was inactivated at 20 mA cm-2 after 120 min of electrolysis, independent of the anode used. In the absence of chloride, the energy consumption (EC) was of 34.80 kWh m-3, at 20 mA cm-2 by using Ti/RuO2TiO2 anode. Meanwhile, in the presence of chloride, EC was reduced, requiring 30.24 and 30.99 kWh m-3 at 20 mA cm-2, for Ti/RuO2TiO2 and Ti/RuO2IrO2TiO2 electrodes, respectively, The best performance for cell lysis was obtained in the presence of chloride with EC of 88.80 kWh m-3 (Ti/RuO2TiO2) and 91.85 kWh m-3 (Ti/RuO2IrO2TiO2) to remove, respectively, 92 and 95 % of density yeast. The results clearly showed that yeast, as a model adopted, was efficiently inactivated and lysed by electrolysis disinfection using DSA-type electrodes.


Assuntos
Desinfecção/métodos , Eletrólise/métodos , Saccharomyces cerevisiae , Poluentes Químicos da Água , Oxirredução , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
3.
Sensors (Basel) ; 8(3): 1950-1959, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-27879804

RESUMO

The electrocatalysis of dopamine has been studied using a cobalt hexacyanoferrate film (CoHCFe)-modified glassy carbon electrode. Using a rotating disk CoHCFe-modified electrode, the reaction rate constant for dopamine was found to be 3.5 × 105 cm³ mol-1 s-1 at a concentration of 5.0 × 10-5 mol L-1. When a Nafion® film is applied to the CoHCFe-modified electrode surface a high selectivity for the determination of dopamine over ascorbic acid was obtained. The analytical curve for dopamine presented linear dependence over the concentration range from 1.2 × 10-5 to 5.0 × 10-4 mol L-1 with a slope of 23.5 mA mol-1 L and a linear correlation coefficient of 0.999. The detection limit of this method was 8.9 × 10-6 mol L-1 and the relative standard deviation for five measurements of 2.5 × 10-4 mol L-1 dopamine was 0.58%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA