Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; : e202400786, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777789

RESUMO

This study carried out to investigate the anti-inflammatory and antinociceptive effect of tropane alkaloid (EB7) isolated from E. bezerrae. It evaluated the toxicity and possible involvement of ion channels in the antinociceptive effect of EB7, as well as its anti-inflammatory effect in adult zebrafish (Zfa). Docking studies with EB7 and COX-1 and 2 were also performed. The tested doses of EB7 (4, 20 and 40 mg/kg) did not show any toxic effect on Zfa during the 96h of analysis (LD50 > 40 mg/kg). They did not produce any alteration in the locomotor behavior of the animals. Furthermore, EB7 showed promising pharmacological effects as it prevented the nociceptive behavior induced by hypertonic saline, capsaicin, formalin and acid saline. EB7 had its analgesic effect blocked by amiloride involving the neuromodulation of ASICs in Zfa. In evaluating the anti-inflammatory activity, the edema induced by κ-carrageenan 3.5% was reduced by the dose of 40 mg/kg of EB7 observed after the fourth hour of analysis, indicating an effect similar to that of ibuprofen. Molecular docking results indicated that EB7 exhibited better affinity energy when compared to ibuprofen control against the two evaluated targets binding at different sites in the cocrystallized COX-1 and 2 inhibitors.

2.
Chem Biodivers ; : e202400935, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818650

RESUMO

The study focuses on the anxiolytic potential of chalcone (2E,4E)-1-(2-hydroxyphenyl)-5-phenylpenta-2,4-dien-1-one (CHALCNM) in adult zebrafish. Successfully synthesized in 58% yield, CHALCNM demonstrated no toxicity after 96 h of exposure. In behavioral tests, CHALCNM (40 mg/kg) reduced locomotor activity and promoted less anxious behavior in zebrafish, confirmed by increased permanence in the light zone of the aquarium. Flumazenil reversed its anxiolytic effect, indicating interaction with GABAA receptors. Furthermore, CHALCNM (4 and 20 mg/kg) preserved zebrafish memory in inhibitory avoidance tests. Virtual screening and ADMET profile studies suggest high oral bioavailability, access to the CNS, favored by low topological polarity (TPSA ≤ 75 Ų) and low incidence of hepatotoxicity, standing out as a promising pharmacological agent against the GABAergic system. In molecular coupling, CHALCNM demonstrated superior affinity to diazepam for the GABAA receptor. These results reinforce the therapeutic potential of CHALCNM in the treatment of anxiety, highlighting its possible future clinical application.

3.
Chem Biodivers ; : e202400538, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639566

RESUMO

This is the first study to analyze the anti-inflammatory and antinociceptive effect of withanicandrin, isolated from Datura Ferox leaves, and the possible mechanism of action involved in adult zebrafish (ZFa). To this end, the animals were treated intraperitoneally (i. p.) with withanicandrin (4; 20 and 40 mg/kg; 20 µL) and subjected to locomotor activity and acute toxicity. Nociception tests were also carried out with chemical agents, in addition to tests to evaluate inflammatory processes induced by κ-Carrageenan 1.5 % and a Molecular Docking study. As a result, withanicandrin reduced nociceptive behavior by capsaicin at a dose of 40 mg/kg and by acid saline at doses of 4 and 40 mg/kg, through neuromodulation of TRPV1 channels and ASICs, identified through blocking the antinociceptive effect of withanicandrin by the antagonists capsazepine and naloxone. Furthermore, withanicandrin caused an anti-inflammatory effect through the reduction of abdominal edema, absence of leukocyte infiltrate in the liver tissue and reduction of ROS in thel liver tissue and presented better affinity energy compared to control morphine (TRPV1) and ibuprofen (COX-1 and COX-2).

4.
Chem Biodivers ; 21(4): e202400063, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38329295

RESUMO

The xanthone lichenxanthone did not show toxic effects (LC50>1.0 mg/mL). lichenxanthone prevented nociceptive behavior induced by acidic saline, and its analgesic effect was blocked by amiloride, highlighting the involvement of neuromodulation of acid-sensitive ion channels (ASICs). In the analysis of anti-inflammatory activity, concentrations of 0.1 and 0.5 mg/mL of lichenxanthone reduced the edema induced by k-carrageenan 3.5 %, observed from the fourth hour of analysis. This effect was similar to that observed with ibuprofen (positive control). No leukocyte infiltrates were observed in lichenxanthone, suggesting that the compound acts in the acute inflammatory response. The results of the molecular docking study revealed that lichenxanthone exhibited better affinity energy when compared to the ibuprofen control against the two targets evaluated.


Assuntos
Ibuprofeno , Peixe-Zebra , Animais , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Canais Iônicos
5.
Int J Nanomedicine ; 16: 5017-5036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326639

RESUMO

INTRODUCTION: Research on gold nanoparticles (AuNPs) occupies a prominent place in the field of biomedicine nowadays, being their putative toxicity and bioactivity areas of major concern. The green synthesis of metallic nanoparticles using extracts from marine organisms allows the avoidance of hazardous production steps while maintaining features of interest, thus enabling the exploitation of their promising bioactivity. OBJECTIVE: To synthesize and characterize AuNPs using, for the first time, macroalga Cystoseira tamariscifolia aqueous extract (Au@CT). METHODS: Algal aqueous extracts were used for the synthesis of AuNPs, which were characterized using a wide panel of physicochemical techniques and biological assays. RESULTS: The characterization by UV-Vis spectroscopy, transmission electron microscopy, Z-potential and infrared spectroscopy confirmed that Au@CT were stable, spherical and polycrystalline, with a mean diameter of 7.6 ± 2.2 nm. The antioxidant capacity of the extract, prior to and after synthesis, was analyzed in vitro, showing that the high antioxidant potential was not lost during the synthesis. Subsequently, in vitro and in vivo toxicity was screened, by comparing two species of the genus Cystoseira (C. tamariscifolia and C. baccata) and the corresponding biosynthesized gold nanoparticles (Au@CT and Au@CB). Cytotoxicity was tested in mouse (L929) and human (BJ5ta) fibroblast cell lines. In both cases, only the highest (nominal) test concentration of both extracts (31.25 mg/mL) or Au@CB (12.5 mM) significantly affected cell viability, as measured by the MTT assay. These results were corroborated by a Fish Embryo Acute Toxicity (FET) test. Briefly, it was shown that, at the highest (nominal) tested concentration (31.25 mg/mL), CT extract induced significantly higher cytotoxicity and embryotoxicity than CB extract. However, it was demonstrated that Au@CT, but not Au@CB, were generally non-toxic. At sub-lethal (nominal) test concentrations (1.25 and 2.5 mM), Au@CT affected zebrafish embryonic development to a much lesser extent than Au@CB. In vitro wound healing assays also revealed that, while other experimental conditions did not impact cell migration, CT and Au@CT displayed a moderate positive effect. CONCLUSION: Au@CT and Au@CB display promising features, desirable for biomedical applications, as wound healing.


Assuntos
Nanopartículas Metálicas , Alga Marinha , Animais , Linhagem Celular , Desenvolvimento Embrionário , Ouro/toxicidade , Química Verde , Humanos , Nanopartículas Metálicas/toxicidade , Camundongos , Extratos Vegetais/toxicidade , Peixe-Zebra
6.
J Colloid Interface Sci ; 587: 499-509, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388652

RESUMO

Particle engineering for co-delivery of drugs has the potential to combine multiple drugs with different pharmaceutical mechanisms within the same carrier, increasing the therapeutic efficiency while improving patient compliance. This work proposes a novel approach for producing polymer-polymer core-shell microparticles by multi-step processing of emulsion and spray drying. The particle core was obtained by an oil-in-water emulsion of poly(ε-caprolactone) (PCL) loaded with curcumin (CM), followed by the resuspension in poly(vinyl alcohol) (PVA) containing ciprofloxacin (CPx) forming the shell layer by spray-drying. The obtained core-shell particles showed an average size of 3.8 ± 1.2 µm, which is a suitable size for inhalation therapies. The spatial distribution of the drugs was studied using synchrotron-based macro attenuated total reflection Fourier transform infrared (macro ATR-FTIR) microspectroscopy to map the chemical distribution of the components within the particles and supported the presence of CM and CPx in the core and shell layers, respectively. The formation of the core-shell structure was further supported by the differences in the release profile of CM from these particles, when compared to the release profile observed for the single particle structure (PCL-CM). Both empty and drug-loaded carriers (up to 100 µg.mL-1) showed no cytotoxic effects on A549 cells while exhibiting the antibacterial activity of CPx against Gram-positive and Gram-negative bacteria. These polymer core-shell microparticles provide a promising route for the combination and sequential drug release therapies, with the potential to be used in inhalation therapies.


Assuntos
Antibacterianos , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Portadores de Fármacos , Bactérias Gram-Positivas , Humanos , Tamanho da Partícula , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...