Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1180714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201116

RESUMO

Introduction: Intestinal colonization by Multi-Drug Resistant Organisms (MDROs) can pose a threat on the health of critically ill patients. The extent of colonization by these organisms is related to previous antibiotic treatments and their ability to cause infections among adult patients. The aim of this study is to determine the relationship between the intestinal Relative Loads (RLs) of selected antibiotic resistance genes, antibiotic consumption and extra-intestinal spread among critically ill pediatric patients. Methods: RLs of bla CTX-M-1-Family, bla OXA-1, bla OXA-48 and bla VIM were determined in 382 rectal swabs obtained from 90 pediatric critically ill patients using qPCRs. The RLs were compared to the patients' demographics, antibiotic consumption, and detection of MDROs from extra-intestinal sites. 16SrDNA metagenomic sequencing was performed for 40 samples and clonality analyses were done for representative isolates. Results and discussion: 76 (74.45%) patients from which 340 (89.01%) rectal swabs were collected had at least one swab that was positive for one of the tested genes. Routine cultures did not identify carbapenemases in 32 (45.1%) and 78 (58.2%) swabs that were positive by PCR for bla OXA-48 and blaVIM, respectively. RLs of above 6.5% were associated with extra-intestinal spread of blaOXA-48-harboring MDROs. Consumption of carbapenems, non-carbapenem ß-lactams, and glycopeptides were statistically associated with testing negative for bla CTX-M-1-Family and bla OXA-1 while the consumption of trimethoprim/sulfamethoxazole and aminoglycosides was associated with testing negative for blaOXA-48 (P<0.05). In conclusion, targeted qPCRs can be used to determine the extent of intestinal dominance by antibiotic resistant opportunistic pathogens and their potential to cause extra-intestinal infections among a critically ill pediatric population.


Assuntos
Estado Terminal , beta-Lactamases , Adulto , Humanos , Criança , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
2.
Microbiol Spectr ; 10(6): e0284222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346231

RESUMO

Pediatric liver transplantation (PLTx) is commonly associated with extensive antibiotic treatments that can produce gut microbiome alterations and open the way to dominance by multidrug-resistant organisms (MDROs). In this study, the relationship between intestinal Relative Loads (RLs) of ß-lactamase genes, antibiotic consumption, microbiome disruption, and the extraintestinal dissemination of MDROs among PLTx patients is investigated. 28 PLTx patients were included, from whom 169 rectal swabs were collected. Total DNA was extracted and blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were quantified via quantitative polymerase chain reaction (qPCR) and normalized to the total bacterial load (16SrRNA) through LogΔΔCt to determine the RLs. 16SrRNA sequencing was performed for 18 samples, and metagenomic sequencing was performed for 2. Patients' clinical data were retrieved from the hospital's database. At least one of the genes tested were detected in all of the patients. The RLs for blaCTX-M-1-Family, blaOXA-1, blaOXA-48, and blaVIM were higher than 1% of the total bacterial population in 67 (80.73%), 56 (78.87%), 57 (77.03%) and 39 (61.9%) samples, respectively. High RLs for blaCTX-M-1-Family, blaOXA-1, and/or blaOXA-48, were positively associated with the consumption of carbapenems with trimethoprim-sulfamethoxazole and coincided with low diversity in the gut microbiome. Low RLs were associated with the consumption of noncarbapenem ß-lactams with aminoglycosides (P < 0.05). Extraintestinal isolates harboring the same gene(s) as those detected intraintestinally were found in 18 samples, and the RLs of the respective swabs were high. We demonstrated a relationship between the consumption of carbapenems with trimethoprim-sulfamethoxazole, intestinal dominance by MDROs and extraintestinal spread of these organisms among PLTx patients. IMPORTANCE In this study, we track the relative intestinal loads of antibiotic resistance genes among pediatric liver transplant patients and determine the relationship between this load, antibiotic consumption, and infections caused by antibiotic-resistant organisms. We demonstrate that the consumption of broad spectrum antibiotics increase this load and decrease the gut microbial diversity among these patients. Moreover, the high loads of resistance genes were related to the extraintestinal spread of multidrug-resistant organisms. Together, our data show that the tracking of the relative intestinal loads of antibiotic resistance genes can be used as a biomarker that has the potential to stop the extraintestinal spread of antibiotic-resistant bacteria via the measurement of the intestinal dominance of these organisms, thereby allowing for the application of preventive measures.


Assuntos
Farmacorresistência Bacteriana Múltipla , Transplante de Fígado , Humanos , Criança , Farmacorresistência Bacteriana Múltipla/genética , Combinação Trimetoprima e Sulfametoxazol/farmacologia , Combinação Trimetoprima e Sulfametoxazol/uso terapêutico , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...