Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570935

RESUMO

In order to discover sRNA that might function during iron deficiency stress, RNA was prepared from phloem exudates of Arabidopsis thaliana, and used for RNA-seq. Bioanalyzer results indicate that abundant RNA from phloem is small in size-less than 200 nt. Moreover, typical rRNA bands were not observed. Sequencing of eight independent phloem RNA samples indicated that tRNA-derived fragments, specifically 5' tRFs and 5' tRNA halves, are highly abundant in phloem sap, comprising about 46% of all reads. In addition, a set of miRNAs that are present in phloem sap was defined, and several miRNAs and sRNAs were identified that are differentially expressed during iron deficiency.

2.
Plant Cell Environ ; 44(6): 1908-1920, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33797764

RESUMO

Yellow Stripe-Like (YSL) proteins are a family of plant transporters that are typically involved in transition metal homeostasis. Three of the four YSL clades (I, II and IV) transport metals complexed with the non-proteinogenic amino acid nicotianamine or its derivatives. No such capability has been shown for any member of clade III, but the link between these YSLs and metal homeostasis could be masked by functional redundancy. We studied the role of the clade III YSL protein MtSYL7 in Medicago truncatula nodules. MtYSL7, which encodes a plasma membrane-bound protein, is mainly expressed in the pericycle and cortex cells of the root nodules. Yeast complementation assays revealed that MtSYL7 can transport short peptides. M. truncatula transposon insertion mutants with decreased expression of MtYSL7 had lower nitrogen fixation rates and showed reduced plant growth whether grown in symbiosis with rhizobia or not. YSL7 mutants accumulated more copper and iron in the nodules, which is likely to result from the increased expression of iron uptake and delivery genes in roots. Taken together, these data suggest that MtYSL7 plays an important role in the transition metal homeostasis of nodules and symbiotic nitrogen fixation.


Assuntos
Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Transporte Proteico , Rhizobium , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
3.
J Exp Bot ; 71(22): 7257-7269, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32841350

RESUMO

Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.


Assuntos
Arabidopsis , Medicago truncatula , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
4.
New Phytol ; 218(2): 696-709, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29349810

RESUMO

Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Simbiose , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cobre/farmacologia , Transportador de Cobre 1 , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Medicago truncatula/citologia , Família Multigênica , Mutação/genética , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/metabolismo , Fenótipo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Simbiose/efeitos dos fármacos
5.
Plant Cell Environ ; 40(11): 2706-2719, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732146

RESUMO

Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


Assuntos
Medicago truncatula/enzimologia , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/enzimologia , Zinco/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Medicago truncatula/genética , Modelos Biológicos , Fenótipo , Proteínas de Plantas/genética , Interferência de RNA , Nódulos Radiculares de Plantas/genética , Frações Subcelulares/metabolismo
6.
Plant Physiol ; 168(1): 258-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25818701

RESUMO

Iron is critical for symbiotic nitrogen fixation (SNF) as a key component of multiple ferroproteins involved in this biological process. In the model legume Medicago truncatula, iron is delivered by the vasculature to the infection/maturation zone (zone II) of the nodule, where it is released to the apoplast. From there, plasma membrane iron transporters move it into rhizobia-containing cells, where iron is used as the cofactor of multiple plant and rhizobial proteins (e.g. plant leghemoglobin and bacterial nitrogenase). MtNramp1 (Medtr3g088460) is the M. truncatula Natural Resistance-Associated Macrophage Protein family member, with the highest expression levels in roots and nodules. Immunolocalization studies indicate that MtNramp1 is mainly targeted to the plasma membrane. A loss-of-function nramp1 mutant exhibited reduced growth compared with the wild type under symbiotic conditions, but not when fertilized with mineral nitrogen. Nitrogenase activity was low in the mutant, whereas exogenous iron and expression of wild-type MtNramp1 in mutant nodules increased nitrogen fixation to normal levels. These data are consistent with a model in which MtNramp1 is the main transporter responsible for apoplastic iron uptake by rhizobia-infected cells in zone II.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Teste de Complementação Genética , Ferro/farmacologia , Manganês/metabolismo , Medicago truncatula/genética , Modelos Biológicos , Família Multigênica , Mutagênese Insercional/genética , Nitrogenase/metabolismo , Fenótipo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhizobium/efeitos dos fármacos , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Simbiose/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...