Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38540694

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons responsible for unintended or uncontrollable movements. Mutations in the leucine-rich repeat kinase 2 locus contribute to genetic forms of PD. The fruit fly Drosophila melanogaster carrying this mutation (LRRK2-Dm) is an in vivo model of PD that develops motor impairment and stands for an eligible non-mammalian paradigm to test novel therapeutic approaches. Dehydrozingerone (DHZ) is a natural phenolic compound isolated from ginger and presents anti-inflammatory, antioxidant and neuroprotective properties, making it a potential therapeutic target for PD. We administered DHZ and its C2-symmetric dimer (DHZ-DIM) at 0.5 and 1 mM for 14 and 21 days in the LRRK2-Dm, with the aim of assessing changes in rescuing motor behavior, brain dopaminergic neurons, mitochondria and synapses (T-bars). The shorter treatment with both molecules revealed efficacy at the higher dose, improving climbing behavior with a prevention of dopaminergic neuronal demise. After 21 days, a recovery of the motor disability, dopaminergic neuron loss, mitochondrial damage and T-bars failure was observed with the DHZ-DIM. Our data indicate that the DHZ-DIM exerts a more potent neuroprotective effect with respect to the monomer in LRRK2-Dm, prompting further investigation of these compounds in rodent models of PD.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Fármacos Neuroprotetores , Doença de Parkinson , Estirenos , Animais , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Drosophila , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Drosophila melanogaster/genética , Neurônios Dopaminérgicos , Suplementos Nutricionais , Mutação
2.
Exp Neurol ; 374: 114704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281587

RESUMO

The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.


Assuntos
Doença de Parkinson , Tropanos , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Dopamina/metabolismo , Probenecid/farmacologia , Probenecid/uso terapêutico , Neurônios Dopaminérgicos/patologia , Fluordesoxiglucose F18/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/patologia
4.
CNS Neurosci Ther ; 29(7): 1750-1761, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36942502

RESUMO

INTRODUCTION: Increased glutamate levels and electrolytic fluctuations have been observed in acutely manic patients. Despite some efficacy of the non-competitive NMDA receptor antagonist memantine (Mem), such as antidepressant-like and mood-stabilizer drugs in clinical studies, its specific mechanisms of action are still uncertain. The present study aims to better characterize the Drosophila melanogaster fly Shaker mutants (SH), as a translational model of manic episodes within bipolar disorder in humans, and to investigate the potential anti-manic properties of Mem. METHODS AND RESULTS: Our findings showed typical behavioral abnormalities in SH, which mirrored with the overexpression of NMDAR-NR1 protein subunit, matched well to glutamate up-regulation. Such molecular features were associated to a significant reduction of SH brain volume in comparison to Wild Type strain flies (WT). Here we report on the ability of Mem treatment to ameliorate behavioral aberrations of SH (similar to that of Lithium), and its ability to reduce NMDAR-NR1 over-expression. CONCLUSIONS: Our results show the involvement of the glutamatergic system in the SH, given the interaction between the Shaker channel and the NMDA receptor, suggesting this model as a promising tool for studying the neurobiology of bipolar disorders. Moreover, our results show Mem as a potential disease-modifying therapy, providing insight on new mechanisms of action.


Assuntos
Mania , Memantina , Animais , Humanos , Memantina/farmacologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ácido Glutâmico/metabolismo , Fenótipo
5.
Biomed Pharmacother ; 161: 114475, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905810

RESUMO

Withania somnifera (WS) is utilized in Ayurvedic medicine owing to its central and peripheral beneficial properties. Several studies have accrued indicating that the recreational amphetamine-related drug (+/-)- 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) targets the nigrostriatal dopaminergic system in mice, inducing neurodegeneration and gliosis, causing acute hyperthermia and cognitive impairment. This study aimed to investigate the effect of a standardized extract of W. somnifera (WSE) on MDMA-induced neurotoxicity, neuroinflammation, memory impairment and hyperthermia. Mice received a 3-day pretreatment with vehicle or WSE. Thereafter, vehicle- and WSE-pretreated mice were randomly divided into four groups: saline, WSE, MDMA alone, WSE plus MDMA. Body temperature was recorded throughout treatment, and memory performance was assessed by a novel object recognition (NOR) task at the end of treatment. Thereafter, immunohistochemistry was performed to evaluate in the substantia nigra pars compacta (SNc) and striatum the levels of tyrosine hydroxylase (TH), as marker of dopaminergic degeneration, and of glial fibrillary acidic protein (GFAP) and TMEM119, as markers of astrogliosis or microgliosis, respectively. MDMA-treated mice showed a decrease in TH-positive neurons and fibers in the SNc and striatum respectively, an increase in gliosis and body temperature, and a decrease in NOR performance, irrespective of vehicle or WSE pretreatment. Acute WSE plus MDMA counteracted the modifications in TH-positive cells in SNc, GFAP-positive cells in striatum, TMEM in both areas and NOR performance, as compared to MDMA alone, while no differences were observed as compared to saline. Results indicate that WSE acutely administered in combination with MDMA, but not as pretreatment, protects mice against the noxious central effects of MDMA.


Assuntos
Hipertermia Induzida , N-Metil-3,4-Metilenodioxianfetamina , Síndromes Neurotóxicas , Withania , Animais , Camundongos , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Doenças Neuroinflamatórias , Gliose , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/prevenção & controle , Cognição
6.
Front Pharmacol ; 13: 935784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059998

RESUMO

Grape pomaces have recently received great attention for their richness in polyphenols, compounds known to exert anti-inflammatory and antioxidant effects. These pomaces, however, have low brain bioavailability when administered orally due to their extensive degradation in the gastrointestinal tract. To overcome this problem, Nasco pomace extract was incorporated into a novel nanovesicle system called nutriosomes, composed of phospholipids (S75) and water-soluble maltodextrin (Nutriose® FM06). Nutriosomes were small, homogeneously dispersed, had negative zeta potential, and were biocompatible with intestinal epithelial cells (Caco-2). Nasco pomace extract resulted rich in antioxidant polyphenols (gallic acid, catechin, epicatechin, procyanidin B2, and quercetin). To investigate the neuroprotective effect of Nasco pomace in the subacute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD), Nasco nutriosomes or Nasco suspension was administered intragastrically and their neuroprotective effects were evaluated. Degeneration of nigro-striatal dopaminergic neurons induced by subacute MPTP treatment, the pathological hallmark of PD, was assessed through immunohistochemical evaluation of tyrosine hydroxylase (TH) in the caudate-putamen (CPu) and substantia nigra pars compacta (SNc), and the dopamine transporter (DAT) in CPu. Immunohistochemical analysis revealed that Nasco nutriosomes significantly prevented the reduction in TH- and DAT-positive fibres in CPu, and the number of TH-positive cells in SNc following subacute MPTP treatment, while Nasco suspension counteracted MPTP toxicity exclusively in SNc. Overall, these results highlight the therapeutic effects of Nasco pomace extract when administered in a nutriosome formulation in the subacute MPTP mouse model of PD and validate the effectiveness of the nutriosome preparation over suspension as an innovative nano-drug delivery system for in vivo administration.

7.
Neurotherapeutics ; 19(1): 305-324, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35072912

RESUMO

Marketed drugs for Parkinson's disease (PD) treat disease motor symptoms but are ineffective in stopping or slowing disease progression. In the quest of novel pharmacological approaches that may target disease progression, drug-repurposing provides a strategy to accelerate the preclinical and clinical testing of drugs already approved for other medical indications. Here, we targeted the inflammatory component of PD pathology, by testing for the first time the disease-modifying properties of the immunomodulatory imide drug (IMiD) pomalidomide in a translational rat model of PD neuropathology based on the intranigral bilateral infusion of toxic preformed oligomers of human α-synuclein (H-αSynOs). The neuroprotective effect of pomalidomide (20 mg/kg; i.p. three times/week 48 h apart) was tested in the first stage of disease progression by means of a chronic two-month administration, starting 1 month after H-αSynOs infusion, when an already ongoing neuroinflammation is observed. The intracerebral infusion of H-αSynOs induced an impairment in motor and coordination performance that was fully rescued by pomalidomide, as assessed via a battery of motor tests three months after infusion. Moreover, H-αSynOs-infused rats displayed a 40-45% cell loss within the bilateral substantia nigra, as measured by stereological counting of TH + and Nissl-stained neurons, that was largely abolished by pomalidomide. The inflammatory response to H-αSynOs infusion and the pomalidomide treatment was evaluated both in CNS affected areas and peripherally in the serum. A reactive microgliosis, measured as the volume occupied by the microglial marker Iba-1, was present in the substantia nigra three months after H-αSynOs infusion as well as after H-αSynOs plus pomalidomide treatment. However, microglia differed for their phenotype among experimental groups. After H-αSynOs infusion, microglia displayed a proinflammatory profile, producing a large amount of the proinflammatory cytokine TNF-α. In contrast, pomalidomide inhibited the TNF-α overproduction and elevated the anti-inflammatory cytokine IL-10. Moreover, the H-αSynOs infusion induced a systemic inflammation with overproduction of serum proinflammatory cytokines and chemokines, that was largely mitigated by pomalidomide. Results provide evidence of the disease modifying potential of pomalidomide in a neuropathological rodent model of PD and support the repurposing of this drug for clinical testing in PD patients.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Reposicionamento de Medicamentos , Humanos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ratos , Substância Negra/metabolismo , Talidomida/análogos & derivados , Fator de Necrose Tumoral alfa , alfa-Sinucleína/genética
8.
Environ Pollut ; 279: 116912, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33751941

RESUMO

To understand the fate of plastic in oceans and the interaction with marine organisms, we investigated the incorporation of (bio)polymers and microplastics in selected benthic foraminiferal species by applying FTIR (Fourier Transform Infrared) microscopy. This experimental methodology has been applied to cultured benthic foraminifera Rosalina globularis, and to in situ foraminifera collected in a plastic remain found buried into superficial sediment in the Mediterranean seafloor, Rosalina bradyi, Textularia bocki and Cibicidoides lobatulus. In vitro foraminifera were treated with bis-(2-ethylhexyl) phthalate (DEHP) molecule to explore its internalization in the cytoplasm. Benthic foraminifera are marine microbial eukaryotes, sediment-dwelling, commonly short-lived and with reproductive cycles which play a central role in global biogeochemical cycles of inorganic and organic compounds. Despite the recent advances and investigations into the occurrence, distribution, and abundance of plastics, including microplastics, in marine environments, there remain relevant knowledge gaps, particularly on their effects on the benthic protists. No study, to our knowledge, has documented the molecular scale effect of plastics on foraminifera. Our analyses revealed three possible ways through which plastic-related molecules and plastic debris can enter a biogeochemical cycle and may affect the ecosystems: 1) foraminifera in situ can grow on plastic remains, namely C. lobatulus, R. bradyi and T. bocki, showing signals of oxidative stress and protein aggregation in comparison with R. globularis cultured in negative control; 2) DEHP can be incorporated in the cytoplasm of calcareous foraminifera, as observed in R. globularis; 3) microplastic debris, identified as epoxy resin, can be found in the cytoplasm and the agglutinated shell of T. bocki. We hypothesize that plastic waste and their associated additives may produce modifications related to the biomineralization process in foraminifera. This effect would be added to those induced by ocean acidification with negative consequences on the foraminiferal biogenic carbon (C) storage capacity.


Assuntos
Foraminíferos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Concentração de Íons de Hidrogênio , Oceanos e Mares , Plásticos , Polímeros , Água do Mar , Análise Espectral
9.
Neurotoxicology ; 83: 1-13, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338551

RESUMO

Clinical and preclinical evidence indicates that prenatal exposure to glucocorticoids may induce detrimental effects in the offspring, including reduction in fetal growth and alterations in the CNS. On this basis, the present study investigated whether in utero exposure to high levels of glucocorticoids is a risk factor that may lead to an exacerbation of the central noxious effects induced by psychoactive drugs consumed later in life. To this end, pregnant C57BL6/J dams were treated with dexamethasone (DEX, 0.05 mg/kg per day) from gestational day 14 until delivery. Thereafter, the male offspring were evaluated to ascertain the magnitude of dopaminergic damage, astrogliosis and microgliosis elicited in the nigrostriatal tract by the amphetamine-related drug 3,4--methylenedioxymethamphetamine (MDMA, 4 × 20 mg/kg, 2 h apart, sacrificed 48 h later) administered at either adolescence or adulthood. Immunohistochemistry was performed in the substantia nigra pars compacta (SNc) and striatum, to evaluate dopaminergic degeneration by measuring tyrosine hydroxylase (TH), as well as astrogliosis and microgliosis by measuring glial fibrillary acidic protein (GFAP) and ionized calcium-binding adapter molecule 1 (IBA-1), respectively. Moreover, immunohistochemistry was used to ascertain the co-localization of IBA-1 with either the pro-inflammatory interleukin (IL) IL-1ß or the anti-inflammatory IL IL-10, in order to determine the microglial phenotype. In utero administration of DEX induced dopaminergic damage by decreasing the density of TH-positive fibers in the striatum, although only in adult mice. MDMA administration induced dopaminergic damage and glia activation in the nigrostriatal tract of adolescent and adult mice. Mice exposed to DEX in utero and treated with MDMA later in life showed a more pronounced loss of dopaminergic neurons (adolescent mice) and astrogliosis (adolescent and adult mice) in the SNc, compared with control mice. These results suggest that prenatal exposure to glucocorticoids may induce an age-dependent and persistent increase in the susceptibility to central toxicity of amphetamine-related drugs used later in life.


Assuntos
Encéfalo/efeitos dos fármacos , Dexametasona/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucocorticoides/toxicidade , Neuroglia/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Efeitos Tardios da Exposição Pré-Natal , Fatores Etários , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Idade Gestacional , Proteína Glial Fibrilar Ácida/metabolismo , Gliose , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Masculino , Exposição Materna , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , N-Metil-3,4-Metilenodioxianfetamina , Degeneração Neural , Neuroglia/metabolismo , Neuroglia/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Gravidez , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198335

RESUMO

The accumulation of aggregated α-synuclein (αSyn) is a hallmark of Parkinson's disease (PD). Current evidence indicates that small soluble αSyn oligomers (αSynOs) are the most toxic species among the forms of αSyn aggregates, and that size and topological structural properties are crucial factors for αSynOs-mediated toxicity, involving the interaction with either neurons or glial cells. We previously characterized a human αSynO (H-αSynO) with specific structural properties promoting toxicity against neuronal membranes. Here, we tested the neurotoxic potential of these H-αSynOs in vivo, in relation to the neuropathological and symptomatic features of PD. The H-αSynOs were unilaterally infused into the rat substantia nigra pars compacta (SNpc). Phosphorylated αSyn (p129-αSyn), reactive microglia, and cytokine levels were measured at progressive time points. Additionally, a phagocytosis assay in vitro was performed after microglia pre-exposure to αsynOs. Dopaminergic loss, motor, and cognitive performances were assessed. H-αSynOs triggered p129-αSyn deposition in SNpc neurons and microglia and spread to the striatum. Early and persistent neuroinflammatory responses were induced in the SNpc. In vitro, H-αSynOs inhibited the phagocytic function of microglia. H-αsynOs-infused rats displayed early mitochondrial loss and abnormalities in SNpc neurons, followed by a gradual nigrostriatal dopaminergic loss, associated with motor and cognitive impairment. The intracerebral inoculation of structurally characterized H-αSynOs provides a model of progressive PD neuropathology in rats, which will be helpful for testing neuroprotective therapies.


Assuntos
Modelos Animais de Doenças , Doença de Parkinson/fisiopatologia , Substância Negra/metabolismo , alfa-Sinucleína/metabolismo , Animais , Citocinas/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Inflamação , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Fagocitose , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Substância Negra/patologia
11.
Front Aging Neurosci ; 12: 118, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477098

RESUMO

Twelve-month-old male mice expressing the human A53T variant of α-synuclein (A53T) develop dopamine neuron degeneration, neuroinflammation, and motor deficits, along with dysfunctions of the mitochondrial Na+-Ca2+ exchanger (NCX) isoforms 1 (NCX1) and 3 (NCX3) in the nigrostriatal system. Since gender is thought to play a role in the etiology of Parkinson's disease (PD), we characterized neurochemical and behavioral alterations in 12-month-old female A53T transgenic mice. We investigated the presence of dopaminergic degeneration, astrogliosis and microgliosis using immunohistochemistry for tyrosine hydroxylase (TH), glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (IBA-1) in both the substantia nigra pars compacta (SNc) and striatum. In the same regions, we also evaluated the co-localization of NCX1 in cells positive for IBA-1 and the co-localization of NCX3 in TH-positive neurons and fibers. Furthermore, in both male and female mice, we performed motor (beam walking and pole tests) and memory [novel object recognition (NOR) and spontaneous alternation] tasks, together with tests to evaluate peripheral deficits (olfactory and stool collection tests). Female A53T transgenic mice displayed degeneration of nigral dopaminergic neurons, but neither microgliosis nor astrogliosis in the SNc and striatum. Moreover, female A53T transgenic mice displayed co-localization between NCX1 and IBA-1 positive cells in the striatum but not SNc, whereas NCX3 did not co-localize with either TH-positive terminals or neuronal bodies in the nigrostriatal system. Furthermore, female A53T transgenic mice showed increased crossing time in the beam walking test, but no impairments in the pole or memory tests, and in tests that evaluated peripheral deficits, whereas male A53T transgenic mice displayed motor, memory and peripheral deficits. Immunohistochemical and behavioral results obtained here in the female mice differ from those previously observed in males, and suggest a dissimilar influence of NCX1 and NCX3 on dopaminergic function in female and male A53T transgenic mice, strengthening the validity of these mice as a model for studying the etiological factors of PD.

12.
Front Aging Neurosci ; 12: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116655

RESUMO

The search for new disease-modifying drugs for Parkinson's disease (PD) is a slow and highly expensive process, and the repurposing of drugs already approved for different medical indications is becoming a compelling alternative option for researchers. Genetic variables represent a predisposing factor to the disease and mutations in leucine-rich repeat kinase 2 (LRRK2) locus have been correlated to late-onset autosomal-dominant PD. The common fruit fly Drosophila melanogaster carrying the mutation LRRK2 loss-of-function in the WD40 domain (LRRK2WD40), is a simple in vivo model of PD and is a valid tool to first evaluate novel therapeutic approaches to the disease. Recent studies have suggested a neuroprotective activity of immunomodulatory agents in PD models. Here the immunomodulatory drug Pomalidomide (POM), a Thalidomide derivative, was examined in the Drosophila LRRK2WD40 genetic model of PD. Mutant and wild type flies received increasing POM doses (1, 0.5, 0.25 mM) through their diet from day 1 post eclosion, until postnatal day (PN) 7 or 14, when POM's actions were evaluated by quantifying changes in climbing behavior as a measure of motor performance, the number of brain dopaminergic neurons and T-bars, mitochondria integrity. LRRK2WD40 flies displayed a spontaneous age-related impairment of climbing activity, and POM significantly and dose-dependently improved climbing performance both at PN 7 and PN 14. LRRK2WD40 fly motor disability was underpinned by a progressive loss of dopaminergic neurons in posterior clusters of the protocerebrum, which are involved in the control of locomotion, by a low number of T-bars density in the presynaptic bouton active zones. POM treatment fully rescued the cell loss in all posterior clusters at PN 7 and PN 14 and significantly increased the T-bars density. Moreover, several damaged mitochondria with dilated cristae were observed in LRRK2WD40 flies treated with vehicle but not following POM. This study demonstrates the neuroprotective activity of the immunomodulatory agent POM in a genetic model of PD. POM is an FDA-approved clinically available and well-tolerated drug used for the treatment of multiple myeloma. If further validated in mammalian models of PD, POM could rapidly be clinically tested in humans.

13.
Brain Sci ; 10(1)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947539

RESUMO

Within neurodegenerative syndromes, Parkinson's disease (PD) is typically associated with its locomotor defects, sleep disturbances and related dopaminergic (DA) neuron loss. The fruit fly, Drosophila melanogaster (D. melanogaster), with leucine-rich repeat kinase 2 mutants (LRRK2) loss-of-function in the WD40 domain, provides mechanistic insights into corresponding human behaviour, possibly disclosing some physiopathologic features of PD in both genetic and sporadic forms. Moreover, several data support the boosting impact of innate and adaptive immunity pathways for driving the progression of PD. In this context, human dialyzable leukocyte extracts (DLE) have been extensively used to transfer antigen-specific information that influences the activity of various immune components, including inflammatory cytokines. Hence, the main goal of our study was to ascertain the therapeutic potential of DLE from male and female donors on D. melanogaster LRRK2 loss-of-function, as compared to D. melanogaster wild-type (WT), in terms of rescuing physiological parameters, such as motor and climbing activities, which are severely compromised in the mutant flies. Finally, in search of the anatomical structures responsible for restored functions in parkinsonian-like mutant flies, we found a topographical correlation between improvement of locomotor performances and an increased number of dopaminergic neurons in selective areas of LRRK2 mutant brains.

14.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30925704

RESUMO

Ras homolog enriched in striatum (Rhes) is a protein that exerts important physiological functions and modulates psychostimulant drug effects. On this basis, the object of this study was to assess 3,4-methylenedioxymethamphetamine (MDMA) effects on microglial (CD11b) and astroglial (GFAP) activation and on dopamine neuron degeneration (TH) in wild-type (WT) and Rhes knockout (KO) male and female mice of different ages. Motor activity was also evaluated. Adult (3 months) MDMA-treated mice displayed an increase in GFAP-positive cells in striatum (STR), whereas the substantia nigra pars compacta (SNc) was affected only in male mice. In these mice, the increase of CD11b was more extensive including STR, SNc, motor cortex (CTX), ventral tegmental area (VTA), and nucleus accumbens (NAc). MDMA administration also affected TH immunoreactivity in both STR and SNc of male but not female WT and Rhes KO mice. In middle-aged mice (12 months), MDMA administration further increased GFAP and CD11b and decreased TH immunoreactivity in STR and SNc of all mice. Finally, MDMA induced a higher increase of motor activity in adult Rhes KO male, but not female mice. The results show that Rhes protein plays an important role on MDMA-mediated neuroinflammation and neurodegeneration dependent on gender and age, and confirm the important role of Rhes protein in neuroinflammatory and neurodegenerative processes.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Proteínas de Ligação ao GTP/genética , Alucinógenos/efeitos adversos , Inflamação/induzido quimicamente , N-Metil-3,4-Metilenodioxianfetamina/efeitos adversos , Doenças Neurodegenerativas/induzido quimicamente , Fatores Etários , Animais , Neurônios Dopaminérgicos/patologia , Feminino , Deleção de Genes , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Fatores Sexuais
15.
J Hazard Mater ; 370: 98-107, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28847413

RESUMO

Juncus acutus, an halophite plant pioneer in extremely polluted mine areas, was harvested in three different locations of Sardinia (Italy), having Zn soil concentration up to 80g/kg, and Zn water concentration ranging between 10-3g/L and 10-1g/L. Rhizosphere and plant samples were investigated combining X-ray microscopy (XM)/spectroscopy (XAFS) and infrared microspectroscopy (FTIR) to elucidate the chemical composition, (bio)mineralogy and Zn coordinative environment. The multi-technique approach allowed recognizing different biomineralization processes, and Zn complexes in the plant tissues. The Zn chemical environment in root biominerals is multi-phase and, depending on the sampling site, can comprise amorphous Zn silicate, Zn apatite, hydrozincite, and Zn sulphate. Zn cysteine and Zn histidine, complexes quoted as part of a detoxification strategy, were found mainly in plants from the site where the Zn water concentration has the highest values. This different site-specific mode of Zn biomineralization has relevant implications for phytoremediation techniques and for further biotechnology development, which can be better designed and developed after knowledge of site-specific-molecular processes ruling mineral evolution and biomineralization. Carboxylic groups and organic compounds (lignin, cellulose, hemicellulose, pectin and esters) were identified by FTIR analysis, thought the Zn speciation is not apparently linked to these carboxylic group rich biopolymers.


Assuntos
Magnoliopsida/metabolismo , Poluentes do Solo/metabolismo , Compostos de Zinco/metabolismo , Zinco/metabolismo , Biomineralização , Itália , Mineração , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo , Rizosfera
16.
Neuropharmacology ; 144: 219-232, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366005

RESUMO

Methoxetamine (MXE) is a novel psychoactive substance that can induce several short-term effects on emotional states and behavior. However, little is known about the persistent emotional and behavioral effects of MXE. Moreover, neurotoxic effects of MXE have been hypothesized, but never demonstrated in vivo. To clarify these issues, rats received repeated treatment with MXE every other day (0.1-0.5 mg/kg, i.p., × 5), and 7 days later they were challenged with MXE (0.1-0.5 mg/kg, i.p.). Behavioral effects of MXE were first evaluated by measuring emission of ultrasonic vocalizations and locomotor activity after each administration. Thereafter, persistent behavioral effects of MXE were evaluated, starting 8 days after challenge, through elevated plus maze, spontaneous alternation, novel object recognition, and marble burying tests. After completion of behavioral analysis, neurotoxic effects of MXE were evaluated by measuring densities of dopamine transporter, tyrosine hydroxylase, and serotonin transporter in various brain regions. Repeated treatment and challenge with MXE affected neither calling behavior nor locomotor activity of rats. Conversely, rats previously treated with MXE exhibited behavioral alterations in the elevated plus maze, marble burying and novel object recognition tests, suggestive of increased anxiety and impaired non-spatial memory. Noteworthy, the same rats displayed dopaminergic damage in the medial prefrontal cortex, nucleus accumbens, caudate-putamen, substantia nigra pars compacta, and ventral tegmental area, along with accumbal serotonergic damage. Our findings show for the first time that repeated administration of MXE induces persistent behavioral abnormalities and neurotoxicity in rats, which can help elucidating the risks associated with human MXE consumption.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cicloexanonas/efeitos adversos , Cicloexilaminas/efeitos adversos , Síndromes Neurotóxicas , Neurotoxinas/efeitos adversos , Psicotrópicos/efeitos adversos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Emoções/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/psicologia , Proteínas de Ligação a RNA/metabolismo , Ratos Sprague-Dawley , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Environ Sci Pollut Res Int ; 25(36): 36645-36660, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30377963

RESUMO

Zinc incorporation into marine bivalve shells belonging to different genera (Donax, Glycymeris, Lentidium, and Chamelea) grown in mine-polluted seabed sediments (Zn up to 1% w/w) was investigated using x-ray diffraction (XRD), chemical analysis, soft x-ray microscopy combined with low-energy x-ray fluorescence (XRF) mapping, x-ray absorption spectroscopy (XAS), and transmission electron microscopy (TEM). These bivalves grew their shells, producing aragonite as the main biomineral and they were able to incorporate up to 2.0-80 mg/kg of Zn, 5.4-60 mg/kg of Fe and 0.5-4.5 mg/kg of Mn. X-ray absorption near edge structure (XANES) analysis revealed that for all the investigated genera, Zn occurred as independent Zn mineral phases, i.e., it was not incorporated or adsorbed into the aragonitic lattice. Overall, our results indicated that Zn coordination environment depends on the amount of incorporated Zn. Zn phosphate was the most abundant species in Donax and Lentidium genera, whereas, Chamelea shells, characterized by the highest Zn concentrations, showed the prevalence of Zn-cysteine species (up to 56% of total speciation). Other Zn coordination species found in the investigated samples were Zn hydrate carbonate (hydrozincite) and Zn phosphate. On the basis of the coordination environments, it was deduced that bivalves have developed different biogeochemical mechanisms to regulate Zn content and its chemical speciation and that cysteine plays an important role as an active part of detoxification mechanism. This work represents a step forward for understanding bivalve biomineralization and its significance for environmental monitoring and paleoreconstruction.


Assuntos
Exoesqueleto/química , Bivalves/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Mineração , Poluentes Químicos da Água/análise , Zinco/análise , Animais , Itália , Fosfatos/análise , Compostos de Zinco/análise
18.
Front Aging Neurosci ; 10: 163, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29904346

RESUMO

We have recently shown that male Rhes knockout (KO) mice develop a mild form of spontaneous Parkinson's disease (PD)-like phenotype, characterized by motor impairment and a decrease in nigrostriatal dopamine (DA) neurons. Experimental evidence has implicated neuroinflammation in PD progression, and the presence of activated glial cells has been correlated with DA neuron degeneration. Despite this, several factors, such as gender, have been found to affect DAergic neuron degeneration and influence neuroinflammation, explaining the differences between men and women in the etiology of PD. On these basis, we studied age and gender differences in DA neuron degeneration and gliosis in the nigrostriatal system of adult (3-month-old) and middle aged (12-month-old) male and female Rhes wild-type (WT) and KO mice. Through immunohistochemistry, tyrosine hydroxylase (TH), microglial (complement type 3 receptor [CD11b]) and astroglial (glial fibrillary acid protein [GFAP]) increase, were evaluated. Adult male Rhes KO mice showed a decrease in TH and an increase in CD11b, both in the caudate putamen (CPu) and substantia nigra pars compacta (SNc), and an increase in GFAP in the CPu. In contrast, adult female Rhes KO mice showed only a decrease in TH in the SNc, whereas no modifications to the levels of GFAP and CD11b were observed in the CPu or SNc. Middle aged male Rhes KO mice showed a decrease in TH in the CPu and SNc, and an increase in GFAP and CD11b in the SNc. Middle aged female Rhes KO mice showed a decrease in TH in the CPu and SNc and an increase in CD11b only in the CPu, but no modifications to GFAP levels. The more marked DA neuron degeneration and neuroinflammation in male compared with female Rhes KO mice, while confirming the role of Rhes as an important protein for DA neuron survival, gives support to Rhes KO mice as a valuable preclinical model for studying the vulnerability factors of DA neuron degeneration as in PD.

19.
Br J Pharmacol ; 175(16): 3298-3314, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29570770

RESUMO

BACKGROUND AND PURPOSE: Microglial phenotype and phagocytic activity are deregulated in Parkinson's disease (PD). PPARγ agonists are neuroprotective in experimental PD, but their role in regulating microglial phenotype and phagocytosis has been poorly investigated. We addressed it by using the PPARγ agonist MDG548. EXPERIMENTAL APPROACH: Murine microglial cell line MMGT12 was stimulated with LPS and/or MDG548, and their effect on phagocytosis of fluorescent microspheres or necrotic neurons was investigated by flow cytometry. Cytokines and markers of microglia phenotype, such as mannose receptor C type 1; MRC1), Ym1 and CD68 were measured by elisa and fluorescent immunohistochemistry. Levels of Beclin-1, which plays a role in microglial phagocytosis, were measured by Western blotting. In the in vivo MPTP-probenecid (MPTPp) model of PD in mice, MDG548 was tested on motor impairment, nigral neurodegeneration, microglial activation and phenotype. KEY RESULTS: In LPS-stimulated microglia, MDG548 increased phagocytosis of both latex beads and necrotic cells, up-regulated the expression of MRC1, CD68 and to a lesser extent IL-10, while blocking the LPS-induced increase of TNF-α and iNOS. MDG548 also induced Beclin-1. Chronic MPTPp treatment in mice down-regulated MRC1 and TGF-ß and up-regulated TNF-α and IL-1ß immunoreactivity in activated CD11b-positive microglia, causing the death of nigral dopaminergic neurons. MDG548 arrested MPTPp-induced cell death, enhanced MRC1 and restored cytokine levels. CONCLUSIONS AND IMPLICATIONS: This study adds a novel mechanism for PPARγ-mediated neuroprotection in PD and suggests that increasing phagocytic activity and anti-inflammatory markers may represent an effective disease-modifying approach.


Assuntos
Microglia/efeitos dos fármacos , Neuroproteção/fisiologia , PPAR gama/agonistas , Transtornos Parkinsonianos/metabolismo , Fagocitose/efeitos dos fármacos , Tiobarbitúricos/farmacologia , Animais , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Microesferas , PPAR gama/metabolismo , Fenótipo
20.
Mov Disord ; 31(4): 583-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26853527

RESUMO

BACKGROUND: Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. METHODS: Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. RESULTS: Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. CONCLUSIONS: Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging.


Assuntos
Envelhecimento/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Desempenho Psicomotor/fisiologia , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Comportamento Animal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...