Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(23): 23955-23964, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37974412

RESUMO

Exsolution has emerged as a promising method for generating metallic nanoparticles, whose robustness and stability outperform those of more conventional deposition methods, such as impregnation. In general, exsolution involves the migration of transition metal cations, typically perovskites, under reducing conditions, leading to the nucleation of well-anchored metallic nanoparticles on the oxide surface with particular properties. There is growing interest in exploring alternative methods for exsolution that do not rely on high-temperature reduction via hydrogen. For example, utilizing electrochemical potentials or plasma technologies has shown promising results in terms of faster exsolution, leading to better dispersion of nanoparticles under milder conditions. To avoid limitations in scaling up exhibited by electrochemical cells and plasma-generation devices, we proposed a method based on pulsed microwave (MW) radiation to drive the exsolution of metallic nanoparticles. Here, we demonstrate the H2-free MW-driven exsolution of Ni nanoparticles from lanthanum strontium titanates, characterizing the mechanism that provides control over nanoparticle size and dispersion and enhanced catalytic activity and stability for CO2 hydrogenation. The presented method will enable the production of metallic nanoparticles with a high potential for scalability, requiring short exposure times and low temperatures.

2.
Polymers (Basel) ; 14(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36080618

RESUMO

Many efforts are being made to find innovative ways of recycling rubber from end-of-life tires (ELTs), also called ground tire Rubber (GTR). Recycling through devulcanization allows the reintroduction of rubber back into the manufacturing industry. Such a process requires providing enough energy to break the sulfur links, while preventing damage to the polymeric chain. Microwave heating is controllable, efficient, and it does not rely on conventional heating mechanisms (conduction, convection) which may involve high heating losses, but rather on direct dielectric heating. However, to adequately control the microwave-assisted devulcanization performance, a thorough knowledge of the GTR permittivity versus temperature is required. In this work, GTR permittivity was monitored during its devulcanization. A resonant technique based on a dual-mode cylindrical cavity was used to simultaneously heat rubber and measure its permittivity at around 2 GHz. The results show sharp changes in the GTR permittivity at 160 and 190 °C. After the GTR cooled down, a shifted permittivity evidences a change in the GTR structure caused by the devulcanization process. Microwave-assisted devulcanization effectiveness is proven through time-domain nuclear magnetic resonance (NMR) measurements, by verifying the decrease in the cross-link density of processed GTR samples compared to the original sample.

3.
Materials (Basel) ; 15(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683078

RESUMO

Lead-free piezoelectric powders (K0.44Na0.52Li0.04)(Nb0.82Ta0.10Sb0.04)O3 were obtained by conventional and microwave-assisted reactive heating. Firstly, the synthesis of the material was carried out following the mixed oxide route and employing both traditional methods and microwave technology. Thermogravimetry, X-ray diffraction, field emission scanning electron microscopy and electrical properties analyses were evaluated. X-ray diffraction of the powders calcined by the microwave process shows the formation of perovskite structure with orthorhombic geometry, but it is possible to observe the presence of other phases. The presence of the secondary phases found can have a great influence on the heating rate during the synthesis on which the kinetics of the reaction of formation of the piezoelectric compound depend. The calcined powder was sintered at different temperatures by conventional and non-conventional processes. The microstructure of the ceramics sintered by microwave at 1050 °C for 10 min shows perovskite cubes with regular geometry, of size close to 2-5 µm. However, the observed porosity (~8%), the presence of liquid phase and secondary phases in the microstructure of the microwave sintered materials lead to a decrease of the piezoelectric constant. The highest d33 value of 146 pC/N was obtained for samples obtained by conventional at 1100 °C 2 h compared to samples sintered by microwave at 1050 °C 10 min (~15 pC/N).

4.
Artigo em Inglês | MEDLINE | ID: mdl-19227069

RESUMO

The palm oil mills extraction process requires the separation of oil-water-sludge emulsions. For this purpose, the use of sedimentation and/or centrifugation techniques have been required until now. However, significant losses persist in different process flows and new methods are needed to further decrease them, such as methods based on electromagnetic waves application. In the study, emulsions obtained from two flow processes, namely press liquor stream (PL) and recovered stream of the centrifugal step (RC), were exposed to microwave radiation with different exposure times. In the case of the press liquor stream, different oil/water dilution ratios were also studied. The sedimentation speed and efficiency were studied for the irradiated samples and compared to those obtained for the same fluids with no radiation. Also, chromatographic tests were performed on the recovered oil to determine the effect on the oil quality after microwave radiation. The obtained results allow us to conclude that microwave exposure during periods below 1 minute lead to better sedimentation speed and efficiency. It was observed that microwaves facilitate the break of the charges and polarities balances in the emulsions at considerably lower temperatures than the corresponding in the conventional process, without affecting the recovered oil quality.


Assuntos
Micro-Ondas , Óleos de Plantas/isolamento & purificação , Água/química , Emulsões , Resíduos Industriais , Óleo de Palmeira , Transição de Fase , Óleos de Plantas/química , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...