Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 196: 106422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437777

RESUMO

Anthropogenic biodiversity loss poses a significant threat to ecosystem functioning worldwide. Numerically dominant and locally rare (i.e., transient) species are key components of biodiversity, but their contribution to multiple ecosystem functions (i.e., multifunctionality) has been seldomly assessed in marine ecosystems. To fill this gap, here we analyze the effects of a dominant and a transient species on ecosystem multifunctionality. In an observational study conducted along ca. 200 km of the southeastern Pacific coast, the purple mussel Perumytilus purpuratus numerically dominated the mid-intertidal and the dwarf mussel Semimytilus patagonicus exhibited low abundances but higher recruitment rates. In laboratory experiments, the relative abundances of both species were manipulated to simulate the replacement of P. purpuratus by S. patagonicus and five proxies for ecosystem functions-rates of clearance, oxygen consumption, total biodeposit, organic biodeposit, and excretion-were analyzed. This replacement had a positive, linear, and significant effect on the combined ecosystem functions, particularly oxygen consumption and excretion rates. Accordingly, S. patagonicus could well drive ecosystem functioning given favorable environmental conditions for its recovery from rarity. Our study highlights therefore the key role of transient species for ecosystem performance. Improving our understanding of these dynamics is crucial for effective ecosystem conservation, especially in the current scenario of biological extinctions and invasions.


Assuntos
Ecossistema , Mytilidae , Animais , Biodiversidade
2.
Ecology ; 104(4): e3999, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36799413

RESUMO

Beta diversity measures the spatial variation in species composition. Because it influences several community attributes, studies are increasingly investigating its drivers. Spatial environmental heterogeneity is a major determinant of beta diversity, but canopy-forming foundation species can locally modify environmental properties. We used intertidal communities dominated by the canopy-forming alga Mazzaella laminarioides as a model system to examine how a foundation species affects spatial environmental heterogeneity and the resulting beta diversity. Since canopies were found to reduce the spatial variation of temperature and desiccation during low tides, we hypothesized that canopies would decrease understory beta diversity, which we tested through a field experiment that contrasted canopy removal with presence treatments over 32 months. The beta diversity of sessile species was always lower under canopies, but canopies never affected the beta diversity of mobile species. The observed responses for sessile species may result from their abundance being more dependent on spatial abiotic variation than for mobile species, which can occur in stressful areas while temporarily foraging or in transit to other areas. These responses may likely apply to other systems exhibiting canopy-forming foundation species hosting sessile and mobile species assemblages.


Assuntos
Ecossistema , Rodófitas , Rodófitas/crescimento & desenvolvimento
3.
Mar Environ Res ; 175: 105573, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35134640

RESUMO

Predators can influence prey through direct consumption as well as through non-consumptive effects (NCEs). NCEs usually occur mediated by behavioral changes in the prey upon detection of predator cues. Such changes may involve reduction of feeding with a variety of physiological consequences. We evaluated NCEs from an intertidal predatory snail (Acanthina monodon) on a dominant habitat-forming mussel species (Perumytilus purpuratus) from the southeastern Pacific coast. We tested whether A. monodon exerts negative NCEs on clearance rate, oxygen consumption rate, biodeposit production, and between-valve gap size in P. purpuratus. We found that waterborne predator cues triggered a decrease in these variables except biodeposit production. However, the organic content of the biodeposits increased in the presence of predator cues. The snail's physical contact with the mussels strengthened the negative NCEs on between-valve gap size. Since P. purpuratus is a dominant filter-feeder and foundation species in rocky intertidal habitats, predator NCEs on this species might indirectly influence ecosystem-level processes and community structure.


Assuntos
Ecossistema , Mytilidae , Animais , Cadeia Alimentar , Comportamento Predatório/fisiologia , Alimentos Marinhos , Caramujos
4.
J Anim Ecol ; 90(5): 1307-1316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33630333

RESUMO

Predators can exert nonconsumptive effects (NCEs) on prey, which often take place through prey behavioural adjustments to minimise predation risk. As NCEs are widespread in nature, interest is growing to determine whether NCEs on a prey species can indirectly influence several other species simultaneously, thus leading to changes in community structure. In this study, we investigate whether a predator can exert NCEs on a foundation species and indirectly affect community structure. Through laboratory experiments, we first tested whether the predatory marine snail Acanthina monodon exerts negative NCEs on larviphagy (consumption of pelagic larvae) and phytoplankton filtration rates of the mussel Perumytilus purpuratus, an intertidal foundation species. These hypotheses stem from the notion that mussels may decrease feeding activities in the presence of predator cues to limit detection by predators. Afterwards, a field experiment tested whether the presence of A. monodon near mussel beds leads to higher colonisation rates of invertebrates that reproduce through pelagic larvae (expected under a lower larviphagy in P. purpuratus) and to a lower algal biomass on P. purpuratus shells (expected under a lower metabolite excretion in the mussels), thereby changing the community structure of the species typically found in P. purpuratus beds. The laboratory experiments revealed that waterborne cues from A. monodon limit the larviphagy and filtration rates of P. purpuratus. In turn, the field experiment showed that A. monodon cues led to greater abundances of barnacles and bivalves and a lower algal biomass in P. purpuratus beds, thus altering community structure. Overall, this study shows that a predator can indirectly affect community structure through NCEs on an invertebrate foundation species. As invertebrate foundation species are ubiquitous worldwide, understanding predator NCEs on these organisms could help to better understand community regulation in systems structured by such species.


Assuntos
Bivalves , Thoracica , Animais , Ecossistema , Cadeia Alimentar , Comportamento Predatório , Caramujos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...