Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(21): 210404, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37295090

RESUMO

By using the worldline Monte Carlo technique, matrix product state, and a variational approach à la Feynman, we investigate the equilibrium properties and relaxation features of the dissipative quantum Rabi model, where a two level system is coupled to a linear harmonic oscillator embedded in a viscous fluid. We show that, in the Ohmic regime, a Beretzinski-Kosterlitz-Thouless quantum phase transition occurs by varying the coupling strength between the two level system and the oscillator. This is a nonperturbative result, occurring even for extremely low dissipation magnitude. By using state-of-the-art theoretical methods, we unveil the features of the relaxation towards the thermodynamic equilibrium, pointing out the signatures of quantum phase transition both in the time and frequency domains. We prove that, for low and moderate values of the dissipation, the quantum phase transition occurs in the deep strong coupling regime. We propose to realize this model by coupling a flux qubit and a damped LC oscillator.


Assuntos
Método de Monte Carlo , Transição de Fase , Termodinâmica
2.
Phys Rev Lett ; 130(10): 101001, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962014

RESUMO

Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c^{2} mass dark matter. We present new constraints for sub-GeV/c^{2} dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12 306±184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c^{2}. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.6 GeV/c^{2}.

3.
Phys Rev Lett ; 130(10): 101002, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962032

RESUMO

We present a search for dark matter particles with sub-GeV/c^{2} masses whose interactions have final state electrons using the DarkSide-50 experiment's (12 306±184) kg d low-radioactivity liquid argon exposure. By analyzing the ionization signals, we exclude new parameter space for the dark matter-electron cross section σ[over ¯]_{e}, the axioelectric coupling constant g_{Ae}, and the dark photon kinetic mixing parameter κ. We also set the first dark matter direct-detection constraints on the mixing angle |U_{e4}|^{2} for keV/c^{2} sterile neutrinos.

4.
Sci Rep ; 9(1): 13624, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541151

RESUMO

Adiabatic quantum computation (AQC) is a promising counterpart of universal quantum computation, based on the key concept of quantum annealing (QA). QA is claimed to be at the basis of commercial quantum computers and benefits from the fact that the detrimental role of decoherence and dephasing seems to have poor impact on the annealing towards the ground state. While many papers show interesting optimization results with a sizable number of qubits, a clear evidence of a full quantum coherent behavior during the whole annealing procedure is still lacking. In this paper we show that quantum non-demolition (weak) measurements of Leggett Garg inequalities can be used to efficiently assess the quantumness of the QA procedure. Numerical simulations based on a weak coupling Lindblad approach are compared with classical Langevin simulations to support our statements.

5.
Phys Rev Lett ; 123(4): 046401, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31491257

RESUMO

In condensed matter physics many features can be understood in terms of their topological properties. Here we report evidence of a topological quantum transition driven by the charge-phonon coupling in the spinless Haldane model on a honeycomb lattice, a well-known prototypical model of the Chern insulator. Starting from parameters describing the topological phase in the bare Haldane model, we show that increasing the strength of the charge lattice coupling drives the system towards a trivial insulator. The average number of fermions in the Dirac point, characterized by the lowest gap, exhibits a finite discontinuity at the transition point and can be used as a direct indicator of the topological quantum transition. Numerical simulations show, also, that the renormalized phonon propagator exhibits a two peak structure across the quantum transition, whereas, in the absence of the mass term in the bare Haldane model, there is indication of a complete softening of the effective vibrational mode, signaling a charge density wave instability.

6.
Phys Rev Lett ; 121(11): 111303, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265123

RESUMO

We present new constraints on sub-GeV dark-matter particles scattering off electrons based on 6780.0 kg d of data collected with the DarkSide-50 dual-phase argon time projection chamber. This analysis uses electroluminescence signals due to ionized electrons extracted from the liquid argon target. The detector has a very high trigger probability for these signals, allowing for an analysis threshold of three extracted electrons, or approximately 0.05 keVee. We calculate the expected recoil spectra for dark matter-electron scattering in argon and, under the assumption of momentum-independent scattering, improve upon existing limits from XENON10 for dark-matter particles with masses between 30 and 100 MeV/c^{2}.

7.
Phys Rev Lett ; 121(8): 081307, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192596

RESUMO

We present the results of a search for dark matter weakly interacting massive particles (WIMPs) in the mass range below 20 GeV/c^{2} using a target of low-radioactivity argon with a 6786.0 kg d exposure. The data were obtained using the DarkSide-50 apparatus at Laboratori Nazionali del Gran Sasso. The analysis is based on the ionization signal, for which the DarkSide-50 time projection chamber is fully efficient at 0.1 keVee. The observed rate in the detector at 0.5 keVee is about 1.5 event/keVee/kg/d and is almost entirely accounted for by known background sources. We obtain a 90% C.L. exclusion limit above 1.8 GeV/c^{2} for the spin-independent cross section of dark matter WIMPs on nucleons, extending the exclusion region for dark matter below previous limits in the range 1.8-6 GeV/c^{2}.

8.
J Phys Condens Matter ; 28(37): 373001, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27420149

RESUMO

Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

9.
Phys Rev Lett ; 114(14): 146401, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910142

RESUMO

We present the first unbiased results for the mobility µ of a one-dimensional Holstein polaron obtained by numerical analytic continuation combined with diagrammatic and worldline Monte Carlo methods in the thermodynamic limit. We have identified for the first time several distinct regimes in the λ-T plane including a band conduction region, incoherent metallic region, an activated hopping region, and a high-temperature saturation region. We observe that although mobilities and mean free paths at different values of λ differ by many orders of magnitude at small temperatures, their values at T larger than the bandwidth become very close to each other.

10.
Phys Rev Lett ; 114(8): 086601, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25768773

RESUMO

The transport properties at finite temperature of crystalline organic semiconductors are investigated, within the Su-Schrieffer-Heeger model, by combining an exact diagonalization technique, Monte Carlo approaches, and a maximum entropy method. The temperature-dependent mobility data measured in single crystals of rubrene are successfully reproduced: a crossover from super- to subdiffusive motion occurs in the range 150≤T≤200 K, where the mean free path becomes of the order of the lattice parameter and strong memory effects start to appear. We provide an effective model, which can successfully explain features of the absorption spectra at low frequencies. The observed response to slowly varying electric field is interpreted by means of a simple model where the interaction between the charge carrier and lattice polarization modes is simulated by a harmonic interaction between a fictitious particle and an electron embedded in a viscous fluid.

11.
Nat Commun ; 5: 5626, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25418631

RESUMO

The so-called proximity effect is the manifestation, across an interface, of the systematic competition between magnetic order and superconductivity. This phenomenon has been well documented and understood for conventional superconductors coupled with metallic ferromagnets; however it is still less known for oxide materials, where much higher critical temperatures are offered by copper oxide-based superconductors. Here we show that, even in the absence of direct Cu-O-Mn covalent bonding, the interfacial CuO2 planes of superconducting La(1.85)Sr(0.15)CuO(4) thin films develop weak ferromagnetism associated to the charge transfer of spin-polarised electrons from the La(0.66)Sr(0.33)MnO(3) ferromagnet. Theoretical modelling confirms that this effect is general to all cuprate/manganite heterostructures and the presence of direct bonding only affects the strength of the coupling. The Dzyaloshinskii-Moriya interaction, also at the origin of the weak ferromagnetism of bulk cuprates, propagates the magnetisation from the interface CuO2 planes into the superconductor, eventually depressing its critical temperature.

12.
J Phys Condens Matter ; 26(36): 365301, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25122075

RESUMO

We study a charge pump realized with an elastically deformable quantum dot whose center of mass follows a nonlinear stochastic dynamics. The interplay of noise, nonlinear effects, dissipation and interaction with an external time-dependent driving on the pumped charge is fully analyzed. The results show that the quantum pumping mechanism not only is not destroyed by the force fluctuations, but it becomes stronger when the forcing signal frequency is tuned close to the resonance of the vibrational mode. The robustness of the quantum pump with temperature is also investigated and an exponential decay of the pumped charge is found when the coupling to the vibrational mode is present. Implications of our results for nanoelectromechanical systems are also discussed.

13.
Phys Rev Lett ; 109(17): 176402, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215207

RESUMO

The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultrashort powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a three-peak structure in agreement with experimental observations. After an ultrashort pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period T(ph)≈80 fs. The decay time of the phonon oscillations is about 150-200 fs, similar to the relaxation time of the charge system. We propose a criterion for observing these oscillations in high T(c) compounds: the time span of the pump light pulse τ(pump) has to be shorter than the phonon oscillation period T(ph).

14.
Phys Rev Lett ; 105(26): 266605, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231696

RESUMO

We study a single polaron in the Su-Schrieffer-Heeger (SSH) model using four different techniques (three numerical and one analytical). Polarons show a smooth crossover from weak to strong coupling, as a function of the electron-phonon coupling strength λ, in all models where this coupling depends only on phonon momentum q. In the SSH model the coupling also depends on the electron momentum k; we find it has a sharp transition, at a critical coupling strength λ(c), between states with zero and nonzero momentum of the ground state. All other properties of the polaron are also singular at λ=λ(c). This result is representative of all polarons with coupling depending on k and q, and will have important experimental consequences (e.g., in angle-resolved photoemission spectroscopy and conductivity experiments).

15.
J Phys Condens Matter ; 21(45): 456002, 2009 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21694023

RESUMO

The stability of striped magnetic phases in films of La(1-x)A(x)MnO(3) perovskites is investigated. A variational analysis is developed for different film thicknesses at fixed hole density (x = 0.3) and the competition among magnetic phases as a function of the transfer integral and the temperature is analyzed. The stabilization of an in-plane striped magnetic phase is observed with reducing the film thickness at low temperatures below the metal-insulator transition temperature. Within the adopted variational scheme, treating perturbatively the residual electron-phonon interaction, the dependence of the in-plane resistivity on temperature for different thicknesses is calculated. At low temperatures, due to the striped magnetic phase, the resistivity shows an important in-plane anisotropy. The obtained results are found to be consistent with experiments.

16.
Phys Rev Lett ; 100(16): 166401, 2008 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-18518226

RESUMO

The charge dynamics in weakly hole doped high temperature superconductors is studied in terms of the accurate numerical solution to a model of a single hole interacting with a quantum lattice in an antiferromagnetic background, and accurate far-infrared ellipsometry measurements. The experimentally observed two electronic bands in the infrared spectrum can be identified in terms of the interplay between the electron correlation and electron-phonon interaction resolving the long standing mystery of the midinfrared band.

17.
Phys Rev Lett ; 99(14): 146405, 2007 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17930694

RESUMO

The nonlocal nature of the polaron formation in t - t '- t'' - J model is studied in large lattices up to 64 sites by developing a new numerical method. We show that the effect of longer-range hoppings t' and t'' is a large anisotropy of the electron-phonon interaction (EPI) leading to a completely different influence of EPI on the nodal and antinodal points in agreement with the experiments. Furthermore, nonlocal EPI preserves polaron's quantum motion, which destroys the antiferromagnetic order effectively, even in the strong coupling regime, although the quasiparticle weight in angle-resolved-photoemission spectroscopy is strongly suppressed.

18.
J Phys Condens Matter ; 19(18): 186227, 2007 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-21691008

RESUMO

The effect of Rashba spin-orbit interaction in quantum wires with hard-wall boundaries is discussed. The exact wavefunction and eigenvalue equation are worked out, pointing out the mixing between the spin and spatial parts. The spectral properties are also studied within perturbation theory with respect to the strength of the spin-orbit interaction and diagonalization procedure. A comparison is made with the results of a simple model, the two-band model, that takes account only of the first two sub-bands of the wire. Finally, the transport properties within the ballistic regime are analytically calculated for the two-band model and through a tight-binding Green function for the entire system. Single and double interfaces separating regions with different strengths of spin-orbit interaction are analysed by injecting carriers into the first and the second sub-band. It is shown that in the case of a single interface the spin polarization in the Rashba region is different from zero, and in the case of two interfaces the spin polarization shows oscillations due to spin-selective bound states.

19.
Phys Rev Lett ; 99(22): 226402, 2007 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18233306

RESUMO

We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J Holstein model giving perfect agreement with numerically exact diagrammatic Monte Carlo (DMC) data at zero temperature for all regimes of electron-phonon coupling. Generalizing the approach to finite temperatures, we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction.

20.
Phys Rev Lett ; 96(13): 136405, 2006 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-16712012

RESUMO

The optical absorption of the Fröhlich polaron model is obtained by an approximation-free diagrammatic Monte Carlo method and compared with two new approximate approaches that treat lattice relaxation effects in different ways. We show that: (i) a strong coupling expansion, based on the Franck-Condon principle, well describes the optical conductivity for large coupling strengths (alpha > 10); (ii) a memory function formalism with phonon broadened levels reproduces the optical response for weak coupling strengths (alpha < 6) taking the dynamic lattice relaxation into account. In the coupling regime 6 < alpha < 10, the optical conductivity is a rapidly changing superposition of both Franck-Condon and dynamic contributions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...