Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(18): 187102, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204903

RESUMO

Interfaces of phase-separated systems roughen in time due to capillary waves. Because of fluxes in the bulk, their dynamics is nonlocal in real space and is not described by the Edwards-Wilkinson or Kardar-Parisi-Zhang (KPZ) equations, nor their conserved counterparts. We show that, in the absence of detailed balance, the phase-separated interface is described by a new universality class that we term |q|KPZ. We compute the associated scaling exponents via one-loop renormalization group and corroborate the results by numerical integration of the |q|KPZ equation. Deriving the effective interface dynamics from a minimal field theory of active phase separation, we finally argue that the |q|KPZ universality class generically describes liquid-vapor interfaces in two- and three-dimensional active systems.

2.
Phys Rev Lett ; 130(9): 098203, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930897

RESUMO

Classical Nucleation Theory (CNT), linking rare nucleation events to the free-energy landscape of a growing nucleus, is central to understanding phase-change kinetics in passive fluids. Nucleation in nonequilibrium systems is much harder to describe because there is no free energy, but instead a dynamics-dependent quasipotential that typically must be found numerically. Here we extend CNT to a class of active phase-separating systems governed by a minimal field-theoretic model (Active Model B+). In the small noise and supersaturation limits that CNT assumes, we compute analytically the quasipotential, and hence, nucleation barrier, for liquid-vapor phase separation. Crucial to our results, detailed balance, although broken microscopically by activity, is restored along the instanton trajectory, which in CNT involves the nuclear radius as the sole reaction coordinate.

3.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210316, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35965460

RESUMO

Normally, science proceeds following a well-established set of principles. Studies are done with an emphasis on correctness, are submitted to a journal editor who evaluates their relevance, and then undergo anonymous peer review by experts before publication in a journal and acceptance by the scientific community via the open literature. This process is slow, but its accuracy has served all fields of science well. In an emergency situation, different priorities come to the fore. Research and review need to be conducted quickly, and the target audience consists of policymakers. Scientists must jostle for the attention of non-specialists without sacrificing rigour, and must deal not only with peer assessment but also with media scrutiny by journalists who may have agendas other than ensuring scientific correctness. Here, we describe how the Royal Society coordinated efforts of diverse scientists to help model the coronavirus epidemic. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.

4.
Phys Rev Lett ; 128(21): 219901, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35687475

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.127.068001.

5.
Phys Rev Lett ; 127(6): 068001, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34420338

RESUMO

In passive fluid-fluid phase separation, a single interfacial tension sets both the capillary fluctuations of the interface and the rate of Ostwald ripening. We show that these phenomena are governed by two different tensions in active systems, and compute the capillary tension σ_{cw} which sets the relaxation rate of interfacial fluctuations in accordance with capillary wave theory. We discover that strong enough activity can cause negative σ_{cw}. In this regime, depending on the global composition, the system self-organizes, either into a microphase-separated state in which coalescence is highly inhibited, or into an "active foam" state. Our results are obtained for Active Model B+, a minimal continuum model which, although generic, admits significant analytical progress.

6.
Phys Rev Lett ; 123(21): 214504, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809141

RESUMO

We develop a tensorial constitutive model for dense, shear-thickening particle suspensions subjected to time-dependent flow. Our model combines a recently proposed evolution equation for the suspension microstructure in rate-independent materials with ideas developed previously to explain the steady flow of shear-thickening ones, whereby friction proliferates among compressive contacts at large particle stresses. We apply our model to shear reversal, and find good qualitative agreement with particle-level, discrete-element simulations whose results we also present.

7.
Phys Rev Lett ; 123(14): 148005, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702222

RESUMO

Suspensions of spherical active particles often show microphase separation. At a continuum level, coupling their scalar density to fluid flow, there are two distinct explanations. Each involves an effective interfacial tension: the first mechanical (causing flow) and the second diffusive (causing Ostwald ripening). Here we show how the negative mechanical tension of contractile swimmers creates, via a self-shearing instability, a steady-state life cycle of droplet growth interrupted by division whose scaling behavior we predict. When the diffusive tension is also negative, this is replaced by an arrested regime (mechanistically distinct, but with similar scaling) where division of small droplets is prevented by reverse Ostwald ripening.

8.
Soft Matter ; 15(34): 6896-6902, 2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31423501

RESUMO

We study the dynamics of quasi-two-dimensional concentrated suspensions of colloidal particles in active gels by computer simulations. Remarkably, we find that activity induces a dynamic clustering of colloids even in the absence of any preferential anchoring of the active nematic director at the particle surface. When such an anchoring is present, active stresses instead compete with elastic forces and re-disperse the aggregates observed in passive colloid-liquid crystal composites. Our quasi-two-dimensional "inverse" dispersions of passive particles in active fluids (as opposed to the more common "direct" suspensions of active particles in passive fluids) provide a promising route towards the self-assembly of new soft materials.

9.
J Chem Phys ; 151(4): 044901, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31370557

RESUMO

At the surfaces of autophoretic colloids, slip velocities arise from local chemical gradients that are many-body functions of particle configuration and activity. For rapid chemical diffusion, coupled with slip-induced hydrodynamic interactions, we deduce the chemohydrodynamic forces and torques between colloids. For bottom-heavy particles above a no-slip wall, the forces can be expressed as gradients of a nonequilibrium potential which, by tuning the type of activity, can be varied from repulsive to attractive. When this potential has a barrier, we find arrested phase separation with a mean cluster size set by competing chemical and hydrodynamic interactions. These are controlled, in turn, by the monopolar and dipolar contributions to the active chemical surface fluxes.

10.
Phys Rev Lett ; 121(10): 108003, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30240258

RESUMO

It has recently been argued that steady-state vorticity bands cannot arise in shear thickening suspensions because the normal stress imbalance across the interface between the bands will set up particle migrations. In this Letter, we develop a simple continuum model that couples shear thickening to particle migration. We show by linear stability analysis that homogeneous flow is unstable towards vorticity banding, as expected, in the regime of negative constitutive slope. In full nonlinear computations, we show, however, that the resulting vorticity bands are unsteady, with spatiotemporal patterns governed by stress-concentration coupling. We furthermore show that these dynamical bands also arise in direct particle simulations, in good agreement with the continuum model.

11.
Phys Rev Lett ; 121(3): 037802, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085823

RESUMO

We numerically investigate the behavior of a phase-separating mixture of a blue phase I liquid crystal with an isotropic fluid. The resulting morphology is primarily controlled by an inverse capillary number, χ, setting the balance between interfacial and elastic forces. When χ and the concentration of the isotropic component are both low, the blue phase disclination lattice templates a cubic array of fluid cylinders. For larger χ, the isotropic phase arranges primarily into liquid emulsion droplets which coarsen very slowly, rewiring the blue phase disclination lines into an amorphous elastic network. Our blue phase-simple fluid composites can be externally manipulated: an electric field can trigger a morphological transition between cubic fluid cylinder phases with different topologies.

13.
Phys Rev E ; 93(3): 032702, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078422

RESUMO

We consider a continuum model of active viscoelastic matter, whereby an active nematic liquid crystal is coupled to a minimal model of polymer dynamics with a viscoelastic relaxation time τ(C). To explore the resulting interplay between active and polymeric dynamics, we first generalize a linear stability analysis (from earlier studies without polymer) to derive criteria for the onset of spontaneous heterogeneous flows (strain rate) and/or deformations (strain). We find two modes of instability. The first is a viscous mode, associated with strain rate perturbations. It dominates for relatively small values of τ(C) and is a simple generalization of the instability known previously without polymer. The second is an elastomeric mode, associated with strain perturbations, which dominates at large τ(C) and persists even as τ(C)→∞. We explore the dynamical states to which these instabilities lead by means of direct numerical simulations. These reveal oscillatory shear-banded states in one dimension and activity-driven turbulence in two dimensions even in the elastomeric limit τ(C)→∞. Adding polymer can also have calming effects, increasing the net throughput of spontaneous flow along a channel in a type of drag reduction. The effect of including strong antagonistic coupling between the nematic and polymer is examined numerically, revealing a rich array of spontaneously flowing states.

14.
Artigo em Inglês | MEDLINE | ID: mdl-26465474

RESUMO

We demonstrate that the formation of bicontinuous emulsions stabilized by interfacial particles (bijels) is more robust when nanoparticles rather than microparticles are used. Emulsification via spinodal demixing in the presence of nearly neutrally wetting particles is induced by rapid heating. Using confocal microscopy, we show that nanospheres allow successful bijel formation at heating rates two orders of magnitude slower than is possible with microspheres. In order to explain our results, we introduce the concept of mechanical leeway, i.e., nanoparticles benefit from a smaller driving force towards disruptive curvature. Finally, we suggest that leeway mechanisms may benefit any formulation in which challenges arise due to tight restrictions on a pivotal parameter, but where the restrictions can be relaxed by rationally changing the value of a more accessible parameter.

15.
Phys Rev Lett ; 114(9): 098302, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793858

RESUMO

A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a "drag-reduction" effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid.


Assuntos
Modelos Biológicos , Modelos Químicos , Substâncias Viscoelásticas/química , Bactérias/química , Fenômenos Fisiológicos Bacterianos , Cristais Líquidos/química , Reologia/métodos , Natação
16.
Nat Commun ; 6: 5420, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25607536

RESUMO

Cell motility in higher organisms (eukaryotes) is crucial to biological functions ranging from wound healing to immune response, and also implicated in diseases such as cancer. For cells crawling on hard surfaces, significant insights into motility have been gained from experiments replicating such motion in vitro. Such experiments show that crawling uses a combination of actin treadmilling (polymerization), which pushes the front of a cell forward, and myosin-induced stress (contractility), which retracts the rear. Here we present a simplified physical model of a crawling cell, consisting of a droplet of active polar fluid with contractility throughout, but treadmilling connected to a thin layer near the supporting wall. The model shows a variety of shapes and/or motility regimes, some closely resembling cases seen experimentally. Our work strongly supports the view that cellular motility exploits autonomous physical mechanisms whose operation does not need continuous regulatory effort.


Assuntos
Movimento Celular , Actinas/química , Algoritmos , Animais , Biofísica , Forma Celular , Simulação por Computador , Citoesqueleto/metabolismo , Difusão , Humanos , Imageamento Tridimensional , Modelos Biológicos , Movimento , Miosinas/química , Neoplasias/metabolismo , Fagocitose , Termodinâmica
17.
Soft Matter ; 10(39): 7826-37, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25156695

RESUMO

We study by computer simulations the dynamics of a droplet of passive, isotropic fluid, embedded in a polar active gel. The latter represents a fluid of active force dipoles, which exert either contractile or extensile stresses on their surroundings, modelling for instance a suspension of cytoskeletal filaments and molecular motors. When the polarisation of the active gel is anchored normal to the droplet at its surface, the nematic elasticity of the active gel drives the formation of a hedgehog defect; this defect then drives an active flow which propels the droplet forward. In an extensile gel, motility can occur even with tangential anchoring, which is compatible with a defect-free polarisation pattern. In this case, upon increasing activity the droplet first rotates uniformly, and then undergoes a discontinuous nonequilibrium transition into a translationally motile state, powered by bending deformations in the surrounding active medium.

18.
Nat Commun ; 5: 3954, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24938885

RESUMO

Colloidal particles dispersed in liquid crystals can form new materials with tunable elastic and electro-optic properties. In a periodic 'blue phase' host, particles should template into colloidal crystals with potential uses in photonics, metamaterials and transformational optics. Here we show by computer simulation that colloid/cholesteric mixtures can give rise to regular crystals, glasses, percolating gels, isolated clusters, twisted rings and undulating colloidal ropes. This structure can be tuned via particle concentration, and by varying the surface interactions of the cholesteric host with both the particles and confining walls. Many of these new materials are metastable: two or more structures can arise under identical thermodynamic conditions. The observed structure depends not only on the formulation protocol but also on the history of an applied electric field. This new class of soft materials should thus be relevant to design of switchable, multistable devices for optical technologies such as smart glass and e-paper.

19.
Soft Matter ; 10(1): 157-65, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24652099

RESUMO

We present a simulation study of pattern formation in an ensemble of chemotactic run-and-tumble bacteria, focussing on the effect of spatial confinement, either within traps or inside a maze. These geometries are inspired by previous experiments probing pattern formation in chemotactic strains of E. coli under these conditions. Our main result is that a microscopic model of chemotactic run-and-tumble particles which themselves secrete a chemoattractant is able to reproduce the main experimental observations, namely the formation of bacterial aggregates within traps and in dead ends of a maze. Our simulations also demonstrate that stochasticity plays a key role and leads to a hysteretic response when the chemotactic sensitivity is varied. We compare the results of run-and-tumble particles with simulations performed with a simplified version of the model where the active particles are smooth swimmers which respond to chemotactic gradients by rotating towards the source of chemoattractant. This class of models leads again to aggregation, but with quantitative and qualitative differences in, for instance, the size and shape of clusters.


Assuntos
Escherichia coli/química , Tamanho da Partícula , Propriedades de Superfície
20.
Phys Rev Lett ; 112(9): 098302, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655284

RESUMO

A consensus is emerging that discontinuous shear thickening (DST) in dense suspensions marks a transition from a flow state where particles remain well separated by lubrication layers, to one dominated by frictional contacts. We show here that reasonable assumptions about contact proliferation predict two distinct types of DST in the absence of inertia. The first occurs at densities above the jamming point of frictional particles; here, the thickened state is completely jammed and (unless particles deform) cannot flow without inhomogeneity or fracture. The second regime shows strain-rate hysteresis and arises at somewhat lower densities, where the thickened phase flows smoothly. DST is predicted to arise when finite-range repulsions defer contact formation until a characteristic stress level is exceeded.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...