Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22281031

RESUMO

BackgroundAlthough morbidity and mortality from COVID-19 have been widely reported, the indirect effects of the pandemic beyond 2020 on other major diseases and health service activity have not been well described. MethodsAnalyses used national administrative electronic hospital records in England, Scotland and Wales for 2016-2021. Admissions and procedures during the pandemic (2020-2021) related to six major cardiovascular conditions (acute coronary syndrome, heart failure, stroke/transient ischaemic attack, peripheral arterial disease, aortic aneurysm, and venous thromboembolism) were compared to the annual average in the pre-pandemic period (2016-2019). Differences were assessed by time period and urgency of care. ResultsIn 2020, there were 31,064 (-6%) fewer hospital admissions (14,506 [-4%] fewer emergencies, 16,560 [-23%] fewer elective admissions) compared to 2016-2019 for the six major cardiovascular diseases combined. The proportional reduction in admissions was similar in all three countries. Overall, hospital admissions returned to pre-pandemic levels in 2021. Elective admissions remained substantially below expected levels for almost all conditions in all three countries (-10,996 [-15%] fewer admissions). However, these reductions were offset by higher than expected total emergency admissions (+25,878 [+6%] higher admissions), notably for heart failure and stroke in England, and for venous thromboembolism in all three countries. Analyses for procedures showed similar temporal variations to admissions. ConclusionThis study highlights increasing emergency cardiovascular admissions as a result of the pandemic, in the context of a substantial and sustained reduction in elective admissions and procedures. This is likely to increase further the demands on cardiovascular services over the coming years. Key QuestionWhat is the impact in 2020 and 2021 of the COVID-19 pandemic on hospital admissions and procedures for six major cardiovascular diseases in England, Scotland and Wales? Key FindingIn 2020, there were 6% fewer hospital admissions (emergency: -4%, elective: -23%) compared to 2016-2019 for six major cardiovascular diseases, across three UK countries. Overall, admissions returned to pre-pandemic levels in 2021, but elective admissions remained below expected levels. Take-home MessageThere was increasing emergency cardiovascular admissions as a result of the pandemic, with substantial and sustained reduction in elective admissions and procedures. This is likely to increase further the demands on cardiovascular services over the coming years.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267462

RESUMO

We describe our analyses of data from over 49.7 million people in England, representing near-complete coverage of the relevant population, to assess the risk of myocarditis and pericarditis following BNT162b2 and ChAdOx1 COVID-19 vaccination. A self-controlled case series (SCCS) design has previously reported increased risk of myocarditis after first ChAdOx1, BNT162b2, and mRNA-1273 dose and after second doses of mRNA COVID-19 vaccines in England. Here, we use a cohort design to estimate hazard ratios for hospitalised or fatal myocarditis/pericarditis after first and second doses of BNT162b2 and ChAdOx1 vaccinations. SCCS and cohort designs are subject to different assumptions and biases and therefore provide the opportunity for triangulation of evidence. In contrast to the findings from the SCCS approach previously reported for England, we found evidence for lower incidence of hospitalised or fatal myocarditis/pericarditis after first ChAdOx1 and BNT162b2 vaccination, as well as little evidence to suggest higher incidence of these events after second dose of either vaccination.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268587

RESUMO

ObjectivesTo estimate the impact of the COVID-19 pandemic on cardiovascular disease (CVD) and CVD management using routinely collected medication data as a proxy. DesignDescriptive and interrupted time series analysis using anonymised individual-level population-scale data for 1.32 billion records of dispensed CVD medications across 15.8 million individuals in England, Scotland and Wales. SettingCommunity dispensed CVD medications with 100% coverage from England, Scotland and Wales, plus primary care prescribed CVD medications from England (including 98% English general practices). Participants15.8 million individuals aged 18+ years alive on 1st April 2018 dispensed at least one CVD medicine in a year from England, Scotland and Wales. Main outcome measuresMonthly counts, percent annual change (1st April 2018 to 31st July 2021) and annual rates (1st March 2018 to 28th February 2021) of medicines dispensed by CVD/ CVD risk factor; prevalent and incident use. ResultsYear-on-year change in dispensed CVD medicines by month were observed, with notable uplifts ahead of the first (11.8% higher in March 2020) but not subsequent national lockdowns. Using hypertension as one example of the indirect impact of the pandemic, we observed 491,203 fewer individuals initiated antihypertensive treatment across England, Scotland and Wales during the period March 2020 to end May 2021 than would have been expected compared to 2019. We estimated that this missed antihypertension treatment could result in 13,659 additional CVD events should individuals remain untreated, including 2,281 additional myocardial infarctions (MIs) and 3,474 additional strokes. Incident use of lipid-lowering medicines decreased by an average 14,793 per month in early 2021 compared with the equivalent months prior to the pandemic in 2019. In contrast, the use of incident medicines to treat type-2 diabetes (T2DM) increased by approximately 1,642 patients per month. ConclusionsManagement of key CVD risk factors as proxied by incident use of CVD medicines has not returned to pre-pandemic levels in the UK. Novel methods to identify and treat individuals who have missed treatment are urgently required to avoid large numbers of additional future CVD events, further adding indirect cost of the COVID-19 pandemic.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268113

RESUMO

Deep learning (DL) and machine learning (ML) models trained on long-term patient trajectories held as medical codes in electronic health records (EHR) have the potential to improve disease prediction. Anticoagulant prescribing decisions in atrial fibrillation (AF) offer a use case where the benchmark stroke risk prediction tool (CHA2DS2-VASc) could be meaningfully improved by including more information from a patients medical history. In this study, we design and build the first DL and ML pipeline that uses the routinely updated, linked EHR data for 56 million people in England accessed via NHS Digital to predict first ischaemic stroke in people with AF, and as a secondary outcome, COVID-19 death. Our pipeline improves first stroke prediction in AF by 17% compared to CHA2DS2-VASc (0.61 (0.57-0.65) vs 0.52 (0.52-0.52) area under the receiver operating characteristics curves, 95% confidence interval) and provides a generalisable, opensource framework that other researchers and developers can build on.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266512

RESUMO

ImportanceThe long-term effects of COVID-19 on the incidence of vascular diseases are unclear. ObjectiveTo quantify the association between time since diagnosis of COVID-19 and vascular disease, overall and by age, sex, ethnicity, and pre-existing disease. DesignCohort study based on population-wide linked electronic health records, with follow up from January 1st to December 7th 2020. Setting and participantsAdults registered with an NHS general practice in England or Wales and alive on January 1st 2020. ExposuresTime since diagnosis of COVID-19 (categorised as 0-6 days, 1-2 weeks, 3-4, 5-8, 9-12, 13-26 and 27-49 weeks since diagnosis), with and without hospitalisation within 28 days of diagnosis. Main outcomes and measuresPrimary outcomes were arterial thromboses (mainly acute myocardial infarction and ischaemic stroke) and venous thromboembolic events (VTE, mainly pulmonary embolism and lower limb deep vein thrombosis). We also studied other vascular events (transient ischaemic attack, haemorrhagic stroke, heart failure and angina). Hazard ratios were adjusted for demographic characteristics, previous disease diagnoses, comorbidities and medications. ResultsAmong 48 million adults, 130,930 were and 1,315,471 were not hospitalised within 28 days of COVID-19. In England, there were 259,742 first arterial thromboses and 60,066 first VTE during 41.6 million person-years follow-up. Adjusted hazard ratios (aHRs) for first arterial thrombosis compared with no COVID-19 declined rapidly from 21.7 (95% CI 21.0-22.4) to 3.87 (3.58-4.19) in weeks 1 and 2 after COVID-19, 2.80 (2.61-3.01) during weeks 3-4 then to 1.34 (1.21-1.48) during weeks 27-49. aHRs for first VTE declined from 33.2 (31.3-35.2) and 8.52 (7.59-9.58) in weeks 1 and 2 to 7.95 (7.28-8.68) and 4.26 (3.86-4.69) during weeks 3-4 and 5-8, then 2.20 (1.99-2.44) and 1.80 (1.50-2.17) during weeks 13-26 and 27-49 respectively. aHRs were higher, for longer after diagnosis, after hospitalised than non-hospitalised COVID-19. aHRs were also higher among people of Black and Asian than White ethnicity and among people without than with a previous event. Across the whole population estimated increases in risk of arterial thromboses and VTEs were 2.5% and 0.6% respectively 49 weeks after COVID-19, corresponding to 7,197 and 3,517 additional events respectively after 1.4 million COVID-19 diagnoses. Conclusions and RelevanceHigh rates of vascular disease early after COVID-19 diagnosis decline more rapidly for arterial thromboses than VTEs but rates remain elevated up to 49 weeks after COVID_19. These results support continued policies to avoid COVID-19 infection with effective COVID-19 vaccines and use of secondary preventive agents in high-risk patients. Key pointsO_ST_ABSQuestionC_ST_ABSIs COVID-19 associated with higher long-term incidence of vascular diseases? FindingsIn this cohort study of 48 million adults in England and Wales, COVID-19 was associated with higher incidence, that declined with time since diagnosis, of both arterial thromboses [week 1: adjusted HR [aHR] 21.7 (95% CI 21.0-22.4) weeks 27-49: aHR 1.34 (1.21-1.48)] and venous thromboembolism [week 1: aHR 33.2 (31.3-35.2), weeks 27-49 1.80 (1.50-2.17)]. aHRs were higher, for longer, after hospitalised than non-hospitalised COVID-19. The estimated excess number of arterial thromboses and venous thromboembolisms was 10,500. MeaningAvoidance of COVID-19 infection through vaccination, and use of secondary preventive agents after infection in high-risk patients, may reduce post-COVID-19 acute vascular diseases.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265312

RESUMO

BackgroundUpdatable understanding of the onset and progression of individuals COVID-19 trajectories underpins pandemic mitigation efforts. In order to identify and characterize individual trajectories, we defined and validated ten COVID-19 phenotypes from linked electronic health records (EHR) on a nationwide scale using an extensible framework. MethodsCohort study of 56.6 million people in England alive on 23/01/2020, followed until 31/05/2021, using eight linked national datasets spanning COVID-19 testing, vaccination, primary & secondary care and death registrations data. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity using a combination of international clinical terminologies (e.g. SNOMED-CT, ICD-10) and bespoke data fields; positive test, primary care diagnosis, hospitalisation, critical care (four phenotypes), and death (three phenotypes). Using these phenotypes, we constructed patient trajectories illustrating the transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FindingsWe identified 3,469,528 infected individuals (6.1%) with 8,825,738 recorded COVID-19 phenotypes. Of these, 364,260 (11%) were hospitalised and 140,908 (4%) died. Of those hospitalised, 38,072 (10%) were admitted to intensive care (ICU), 54,026 (15%) received non-invasive ventilation and 21,404 (6%) invasive ventilation. Amongst hospitalised patients, first wave mortality (30%) was higher than the second (23%) in non-ICU settings, but remained unchanged for ICU patients. The highest mortality was for patients receiving critical care outside of ICU in wave 1 (51%). 13,083 (9%) COVID-19 related deaths occurred without diagnoses on the death certificate, but within 30 days of a positive test while 10,403 (7%) of cases were identified from mortality data alone with no prior phenotypes recorded. We observed longer patient trajectories in the second pandemic wave compared to the first. InterpretationOur analyses illustrate the wide spectrum of severity that COVID-19 displays and significant differences in incidence, survival and pathways across pandemic waves. We provide an adaptable framework to answer questions of clinical and policy relevance; new variant impact, booster dose efficacy and a way of maximising existing data to understand individuals progression through disease states. Research in ContextO_ST_ABSEvidence before the studyC_ST_ABSWe searched PubMed on October 14, 2021, for publications with the terms "COVID-19" or "SARS-CoV-2", "severity", and "electronic health records" or "EHR" without date or language restrictions. Multiple studies explore factors associated with severity of COVID-19 infection, and model predictions of outcome for hospitalised patients. However, most work to date focused on isolated facets of the healthcare system, such as primary or secondary care only, was conducted in subpopulations (e.g. hospitalised patients) of limited sample size, and often utilized dichotomised outcomes (e.g. mortality or hospitalisation) ignoring the full spectrum of disease. We identified no studies which comprehensively detailed severity of infections while describing disease severity across pandemic waves, vaccination status, and patient trajectories. Added value of this studyTo our knowledge, this is the first study providing a comprehensive view of COVID-19 across pandemic waves using national data and focusing on severity, vaccination, and patient trajectories. Drawing on linked electronic health record (EHR) data on a national scale (56.6 million people alive and registered with GP in England), we describe key demographic factors, frequency of comorbidities, impact of the two main waves in England, and effect of full vaccination on COVID-19 severities. Additionally, we identify and describe patient trajectory networks which illustrate the main transition pathways of COVID-19 patients in the healthcare system. Finally, we provide reproducible COVID-19 phenotyping algorithms reflecting clinically relevant stages of disease severity i.e. positive tests, primary care diagnoses, hospitalisation, critical care treatments (e.g. ventilatory support) and mortality. Implications of all the available evidenceThe COVID-19 phenotypes and trajectory analysis framework outlined produce a reproducible, extensible and repurposable means to generate national-scale data to support critical policy decision making. By modelling patient trajectories as a series of interactions with healthcare systems, and linking these to demographic and outcome data, we provide a means to identify and prioritise care pathways associated with adverse outcomes and highlight healthcare system touch points which may act as tangible targets for intervention.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263023

RESUMO

ObjectiveEvaluate antithrombotic (AT) use in individuals with atrial fibrillation (AF) and high stroke risk (CHA2DS2-VASc score>=2) and investigate whether pre-existing AT use may improve COVID-19 outcomes. MethodsIndividuals with AF and a CHA2DS2-VASc score>=2 on January 1st 2020 were identified using pseudonymised, linked electronic health records for 56 million people in England and followed-up until May 1st 2021. Factors associated with pre-existing AT use were analysed using logistic regression. Differences in COVID-19 related hospitalisation and death were analysed using logistic and Cox regression for individuals exposed to pre-existing AT use vs no AT use, anticoagulants (AC) vs antiplatelets (AP) and direct oral anticoagulants (DOACs) vs warfarin. ResultsFrom 972,971 individuals with AF and a CHA2DS2-VASc score>=2, 88.0% (n=856,336) had pre-existing AT use, 3.8% (n=37,418) had a COVID-19 related hospitalisation and 2.2% (n=21,116) died. Factors associated with no AT use included comorbidities that may contraindicate AT use (liver disease and history of falls) and demographics (socioeconomic status and ethnicity). Pre-existing AT use was associated with lower odds of death (OR=0.92 [0.87-0.96 at 95% CI]), but higher odds of hospitalisation OR=1.20 [1.15-1.26 at 95% CI]). The same pattern was observed for AC vs AP (death (OR=0.93 [0.87-0.98]), hospitalisation (OR=1.17 [1.11-1.24])) but not for DOACs vs warfarin (death (OR=1.00 [0.95-1.05]), hospitalisation (OR=0.86 [0.82-0.89]). ConclusionsPre-existing AT use may offer marginal protection against COVID-19 death, with AC offering more protection than AP. Although this association may not be causal, it provides further incentive to improve AT coverage for eligible individuals with AF. KEY QUESTIONSO_ST_ABSWhat is already known about this subject?C_ST_ABSO_LIAnticoagulants (AC), a sub-class of antithrombotics (AT), reduce the risk of stroke and are recommended for individuals with atrial fibrillation (AF) and at high risk of stroke (CHA2DS2-VASc score>=2, National Institute for Health and Care Excellence threshold). However, previous evaluations suggest that up to one third of these individuals may not be taking AC. Over estimation of bleeding and fall risk in elderly patients have been identified as potential factors in this under medicating. C_LIO_LIIn response to the COVID-19 pandemic, several observational studies have observed correlations between pre-existing AT use, particularly anticoagulants (AC), and lower risk of severe COVID-19 outcomes such as hospitalisation and death. However, these correlations are inconsistent across studies and have not compared all major sub-types of AT in one study. C_LI What does this study add?O_LIThis study uses datasets covering primary care, secondary care, pharmacy dispensing, death registrations, multiple COVID-19 diagnoses routes and vaccination records for 56 million people in England and is the largest scale evaluation of AT use to date. This provides the statistical power to robustly analyse targeted sub-types of AT and control for a wide range of potential confounders. All code developed for the study is opensource and an updated nationwide evaluation can be rapidly created for future time points. C_LIO_LIIn 972,971 individuals with AF and a CHA2DS2-VASc score>=2, we observed 88.0% (n=856,336) with pre-existing AT use which was associated with marginal protection against COVID-19 death (OR=0.92 [0.87-0.96 at 95% CI]). C_LI How might this impact on clinical practice?O_LIThese findings can help shape global AT medication policy and provide population-scale, observational analysis results alongside gold-standard randomised control trials to help assess whether a potential beneficial effect of pre-existing AT use on COVID-19 death alters risk to benefit assessments in AT prescribing decisions. C_LI

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21262222

RESUMO

BackgroundThromboses in unusual locations after the COVID-19 vaccine ChAdOx1-S have been reported. Better understanding of population-level thrombotic risks after COVID-19 vaccination is needed. MethodsWe analysed linked electronic health records from adults living in England, from 8th December 2020 to 18th March 2021. We estimated incidence rates and hazard ratios (HRs) for major arterial, venous and thrombocytopenic outcomes 1-28 and >28 days after first vaccination dose for ChAdOx1-S and BNT162b2 vaccines. Analyses were performed separately for ages <70 and [≥]70 years, and adjusted for age, sex, comorbidities, and social and demographic factors. ResultsOf 46,162,942 adults, 21,193,814 (46%) had their first vaccination during follow-up. Adjusted HRs 1-28 days after ChAdOx1-S, compared with unvaccinated rates, at ages <70 and [≥]70 respectively, were 0.97 (95% CI: 0.90-1.05) and 0.58 (0.53-0.63) for venous thromboses, and 0.90 (0.86-0.95) and 0.76 (0.73-0.79) for arterial thromboses. Corresponding HRs for BNT162b2 were 0.81 (0.74-0.88) and 0.57 (0.53-0.62) for venous thromboses, and 0.94 (0.90-0.99) and 0.72 (0.70-0.75) for arterial thromboses. HRs for thrombotic events were higher at younger ages for venous thromboses after ChAdOx1-S, and for arterial thromboses after both vaccines. Rates of intracranial venous thrombosis (ICVT) and thrombocytopenia in adults aged <70 years were higher 1-28 days after ChAdOx1-S (adjusted HRs 2.27, 95% CI:1.33- 3.88 and 1.71, 1.35-2.16 respectively), but not after BNT162b2 (0.59, 0.24-1.45 and 1.00, 0.75-1.34) compared with unvaccinated. The corresponding absolute excess risks of ICVT 1-28 days after ChAdOx1-S were 0.9-3 per million, varying by age and sex. ConclusionsIncreases in ICVT and thrombocytopenia after ChAdOx1-S vaccination in adults aged <70 years were small compared with its effect in reducing COVID-19 morbidity and mortality, although more precise estimates for adults <40 years are needed. For people aged [≥]70 years, rates of arterial or venous thrombotic, events were generally lower after either vaccine.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248477

RESUMO

Face masks or coverings are effective at reducing airborne infection rates, yet pandemic mitigation measures, including wearing face coverings, have been suggested to contribute to reductions in quality of life and poorer mental health. Longitudinal analyses of more than 11,000 participants across the UK found no association between lower adherence to face covering guidelines and poorer mental health. The opposite appears to be true. Even after controlling for behavioral, social, and psychological confounds, including measures of pre-pandemic mental health, individuals who wore face coverings "most of the time" or "always" had better mental health and wellbeing than those who did not. These results suggest that wearing face coverings more often will not negatively impact mental health.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20178137

RESUMO

BackgroundCalls are increasing for widespread SARS-CoV-2 infection testing of people from populations with a very low prevalence of infection. We quantified the impact of less than perfect diagnostic test accuracy on populations, and on individuals, in low prevalence settings, focusing on false positives and the role of confirmatory testing. MethodsWe developed a simple, interactive tool to assess the impact of different combinations of test sensitivity, specificity and infection prevalence in a notional population of 100,000. We derived numbers of true positives, true negatives, false positives and false negatives, positive predictive value (PPV - the percentage of test positives that are true positives) and overall test accuracy for three testing strategies: (1) single test for all; (2) add repeat testing in test positives; (3) add further repeat testing in those with discrepant results. We also assessed the impact on test results for individuals having one, two or three tests under these three strategies. ResultsWith sensitivity of 80%, infection prevalence of 1 in 2,000, and specificity 99.9% on all tests, PPV in the tested population of 100,000 will be only 29% with one test, increasing to > 99.5% (100% when rounded to the nearest %) with repeat testing in strategies 2 or 3. More realistically, if specificity is 95% for the first and 99.9% for subsequent tests, single test PPV will be only 1%, increasing to 86% with repeat testing in strategy 2, or 79% with strategy 3 (albeit with 6 fewer false negatives than strategy 2). In the whole population, or in particular individuals, PPV increases as infection becomes more common in the population but falls to unacceptably low levels with lower test specificity. ConclusionTo avoid multiple unnecessary restrictions on whole populations, and in particular individuals, from widespread population testing for SARS-CoV-2, the crucial roles of extremely high test specificity and of confirmatory testing must be fully appreciated and incorporated into policy decisions.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20165464

RESUMO

ObjectivesTo develop and validate a pragmatic risk score to predict mortality for patients admitted to hospital with covid-19. DesignProspective observational cohort study: ISARIC WHO CCP-UK study (ISARIC Coronavirus Clinical Characterisation Consortium [4C]). Model training was performed on a cohort of patients recruited between 6 February and 20 May 2020, with validation conducted on a second cohort of patients recruited between 21 May and 29 June 2020. Setting260 hospitals across England, Scotland, and Wales. ParticipantsAdult patients ([≥]18 years) admitted to hospital with covid-19 admitted at least four weeks before final data extraction. Main outcome measuresIn-hospital mortality. ResultsThere were 34 692 patients included in the derivation dataset (mortality rate 31.7%) and 22 454 in the validation dataset (mortality 31.5%). The final 4C Mortality Score included eight variables readily available at initial hospital assessment: age, sex, number of comorbidities, respiratory rate, peripheral oxygen saturation, level of consciousness, urea, and C-reactive protein (score range 0-21 points). The 4C risk stratification score demonstrated high discrimination for mortality (derivation cohort: AUROC 0.79; 95% CI 0.78 - 0.79; validation cohort 0.78, 0.77-0.79) with excellent calibration (slope = 1.0). Patients with a score [≥]15 (n = 2310, 17.4%) had a 67% mortality (i.e., positive predictive value 67%) compared with 1.0% mortality for those with a score [≤]3 (n = 918, 7%; negative predictive value 99%). Discriminatory performance was higher than 15 pre-existing risk stratification scores (AUROC range 0.60-0.76), with scores developed in other covid-19 cohorts often performing poorly (range 0.63-0.73). ConclusionsWe have developed and validated an easy-to-use risk stratification score based on commonly available parameters at hospital presentation. This outperformed existing scores, demonstrated utility to directly inform clinical decision making, and can be used to stratify inpatients with covid-19 into different management groups. The 4C Mortality Score may help clinicians identify patients with covid-19 at high risk of dying during current and subsequent waves of the pandemic. Study registrationISRCTN66726260

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...