Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(11): e17694, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635627

RESUMO

Therapies reconstituting autologous antiviral immunocompetence may represent an important prophylaxis and treatment for immunosuppressed individuals. Following hematopoietic cell transplantation (HCT), patients are susceptible to Herpesviridae including cytomegalovirus (CMV). We show in a murine model of HCT that macrophage colony-stimulating factor (M-CSF) promoted rapid antiviral activity and protection from viremia caused by murine CMV. M-CSF given at transplantation stimulated sequential myeloid and natural killer (NK) cell differentiation culminating in increased NK cell numbers, production of granzyme B and interferon-γ. This depended upon M-CSF-induced myelopoiesis leading to IL15Rα-mediated presentation of IL-15 on monocytes, augmented by type I interferons from plasmacytoid dendritic cells. Demonstrating relevance to human HCT, M-CSF induced myelomonocytic IL15Rα expression and numbers of functional NK cells in G-CSF-mobilized hematopoietic stem and progenitor cells. Together, M-CSF-induced myelopoiesis triggered an integrated differentiation of myeloid and NK cells to protect HCT recipients from CMV. Thus, our results identify a rationale for the therapeutic use of M-CSF to rapidly reconstitute antiviral activity in immunocompromised individuals, which may provide a general paradigm to boost innate antiviral immunocompetence using host-directed therapies.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Citomegalovirus , Fator Estimulador de Colônias de Macrófagos , Transplante de Células-Tronco Hematopoéticas/métodos , Infecções por Citomegalovirus/prevenção & controle , Hematopoese , Antivirais/farmacologia , Antivirais/uso terapêutico , Diferenciação Celular
2.
EMBO J ; 36(16): 2353-2372, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28701484

RESUMO

Mature differentiated macrophages can self-maintain by local proliferation in tissues and can be extensively expanded in culture under specific conditions, but the mechanisms of this phenomenon remain only partially defined. Here, we show that SIRT1, an evolutionary conserved regulator of life span, positively affects macrophage self-renewal ability in vitro and in vivo Overexpression of SIRT1 during bone marrow-derived macrophage differentiation increased their proliferative capacity. Conversely, decrease of SIRT1 expression by shRNA inactivation, CRISPR/Cas9 mediated deletion and pharmacological inhibition restricted macrophage self-renewal in culture. Furthermore, pharmacological SIRT1 inhibition in vivo reduced steady state and cytokine-induced proliferation of alveolar and peritoneal macrophages. Mechanistically, SIRT1 inhibition negatively regulated G1/S transition, cell cycle progression and a network of self-renewal genes. This included inhibition of E2F1 and Myc and concomitant activation of FoxO1, SIRT1 targets mediating cell cycle progression and stress response, respectively. Our findings indicate that SIRT1 is a key regulator of macrophage self-renewal that integrates cell cycle and longevity pathways. This suggests that macrophage self-renewal might be a relevant parameter of ageing.


Assuntos
Proliferação de Células , Autorrenovação Celular , Macrófagos/fisiologia , Sirtuína 1/metabolismo , Animais , Ciclo Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Camundongos , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...