Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37955323

RESUMO

The electric double layer (EDL) has a pivotal role in screening charges on surfaces as in supercapacitor electrodes or colloidal and polymer solutions. Its structure is determined by correlations between the finite-sized ionic charge carriers of the underlying electrolyte, and, this way, these correlations affect the properties of the EDL and of applications utilizing EDLs. We study the structure of EDLs within classical density functional theory (DFT) in order to uncover whether a structural transition in the first layer of the EDL that is driven by changes in the surface potential depends on specific particle interactions or has a general footing. This transition has been found in full-atom simulations. Thus far, investigating the in-plane structure of the EDL for the primitive model (PM) using DFT has proved a challenge. We show here that the use of an appropriate functional predicts the in-plane structure of EDLs in excellent agreement with molecular dynamics simulations. This provides the playground to investigate how the structure factor within a layer parallel to a charged surface changes as a function of both the applied surface potential and its separation from the surface. We discuss pitfalls in properly defining an in-plane structure factor and fully map out the structure of the EDL within the PM for a wide range of electrostatic electrode potentials. However, we do not find any signature of a structural crossover and conclude that the previously reported effect is not fundamental but rather occurs due to the specific force field of ions used in the simulations.

2.
J Colloid Interface Sci ; 622: 819-827, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35561602

RESUMO

Recent surface forces apparatus experiments that measured the forces between two mica surfaces and a series of subsequent theoretical studies suggest the occurrence of universal underscreening in highly concentrated electrolyte solutions. We performed a set of systematic Atomic Force Spectroscopy measurements for aqueous salt solutions in a concentration range from 1 mM to 5 M using chloride salts of various alkali metals as well as mixed concentrated salt solutions (involving both mono- and divalent cations and anions), that mimic concentrated brines typically encountered in geological formations. Experiments were carried out using flat substrates and submicrometer-sized colloidal probes made of smooth oxidized silicon immersed in salt solutions at pH values of 6 and 9 and temperatures of 25 °C and 45 °C. While strong repulsive forces were observed for the smallest tip-sample separations, none of the conditions explored displayed any indication of anomalous long range electrostatic forces as reported for mica surfaces. Instead, forces are universally dominated by attractive van der Waals interactions at tip-sample separations of ≈2 nm and beyond for salt concentrations of 1 M and higher. Complementary calculations based on classical density functional theory for the primitive model support these experimental observations and display a consistent decrease in screening length with increasing ion concentration.

3.
J Chem Phys ; 155(10): 104702, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525830

RESUMO

In this work, we theoretically study the differential capacitance of an aqueous electrolyte in contact with a planar electrode, using classical density functional theory, and show how this measurable quantity can be used as a probe to better understand the structure and composition of the electric double layer at play. Specifically, we show how small trace amounts of divalent ions can influence the differential capacitance greatly and also how small ions dominate its behavior for high electrode potentials. In this study, we consider primitive model electrolytes and not only use the standard definition of the differential capacitance but also derive a new expression from mechanical equilibrium in a planar geometry. This expression reveals explicitly that the first layer of ions near the charged surface is key to its understanding. Our insights might be used as a guide in experiments to better understand the electrolyte-electrode interface as well as the (composition of the) bulk electrolyte.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...