Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(10): 114795, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39325619

RESUMO

Episodic memory relies on the entorhinal cortex (EC), a crucial hub connecting the hippocampus and sensory processing regions. This study investigates the role of the lateral EC (LEC) in episodic-like memory in mice. Here, we employ the object-place-context-recognition task (OPCRT), a behavioral test used to study episodic-like memory in rodents. Electrophysiology in brain slices reveals that OPCRT specifically induces a shift in the threshold for the induction of synaptic plasticity in LEC superficial layer II. Additionally, a dual viral system is used to express chemogenetic receptors coupled to the c-Fos promoter in neurons recruited during the learning. We demonstrate that the inhibition of LEC neurons impairs the performance of the mice in the memory task, while their stimulation significantly facilitates memory recall. Our findings provide evidence for an episodic-like memory engram in the LEC and emphasize its role in memory processing within the broader network of episodic memory.

2.
Br J Pharmacol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252503

RESUMO

BACKGROUND AND PURPOSE: Retinal ganglion cells (RGCs) are the output stage of retinal information processing, via their axons forming the optic nerve (ON). ON damage leads to axonal degeneration and death of RGCs, and results in vision impairment. Nerve growth factor (NGF) signalling is crucial for RGC operations and visual functions. Here, we investigate a new neuroprotective mechanism of a novel therapeutic candidate, a p75-less, TrkA-biased NGF agonist (hNGFp) in rat RGC degeneration, in comparison with wild type human NGF (hNGFwt). EXPERIMENTAL APPROACH: Both neonate and adult rats, whether subjected or not to ON lesion, were treated with intravitreal injections or eye drops containing either hNGFp or hNGFwt. Different doses of the drugs were administered at days 1, 4 or 7 after injury for a maximum of 10 days, when immunofluorescence, electrophysiology, cellular morphology, cytokine array and behaviour studies were carried out. Pharmacokinetic evaluation was performed on rabbits treated with hNGFp ocular drops. RESULTS: hNGFp exerted a potent RGC neuroprotection by acting on microglia cells, and outperformed hNGFwt in rescuing RGC degeneration and reducing inflammatory molecules. Delayed use of hNGFp after ON lesion resulted in better outcomes compared with treatment with hNGFwt. Moreover, hNGFp-based ocular drops were less algogenic than hNGFwt. Pharmacokinetic measurements revealed that biologically relevant quantities of hNGFp were found in the rabbit retina. CONCLUSIONS AND IMPLICATIONS: Our data point to microglia as a new cell target through which NGF-induced TrkA signalling exerts neuroprotection of the RGC, emphasizing hNGFp as a powerful treatment to tackle retinal degeneration.

3.
eNeuro ; 11(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39293937

RESUMO

Retinitis pigmentosa (RP) is a family of genetically heterogeneous diseases still without a cure. Despite the causative genetic mutation typically not expressed in cone photoreceptors, these cells inevitably degenerate following the primary death of rods, causing blindness. The reasons for the "bystander" degeneration of cones are presently unknown but decrement of survival factors, oxidative stress, and inflammation all play a role. Targeting these generalized biological processes represents a strategy to develop mutation-agnostic therapies for saving vision in large populations of RP individuals. A classical method to support neuronal survival is by employing neurotrophic factors, such as NGF. This study uses painless human NGF (hNGFp), a TrkA receptor-biased variant of the native molecule with lower affinity for nociceptors and limited activity as a pain inducer; the molecule has identical neurotrophic power of the native form but a reduced affinity for the p75NTR receptors, known to trigger apoptosis. hNGFp has a recognized activity on brain microglial cells, which are induced to a phenotype switch from a highly activated to a more homeostatic configuration. hNGFp was administered to RP-like mice in vivo with the aim of decreasing retinal inflammation and also providing retinal neuroprotection. However, the ability of this treatment to counteract the bystander degeneration of cones remained limited.


Assuntos
Fator de Crescimento Neural , Retinose Pigmentar , Retinose Pigmentar/metabolismo , Retinose Pigmentar/genética , Animais , Fator de Crescimento Neural/administração & dosagem , Fator de Crescimento Neural/metabolismo , Humanos , Retina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Modelos Animais de Doenças , Receptor trkA/metabolismo , Masculino , Feminino , Microglia/metabolismo , Microglia/efeitos dos fármacos
4.
J Pers Med ; 14(8)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39201987

RESUMO

Cognitive frailty (CF) is a heterogeneous syndrome that is becoming one of the most serious health problems as the world's population age is increasing. Elucidating its biological mechanisms as well as prevention and treatments is becoming increasingly significant, particularly in view of the associated health costs. We presented the study protocol of a research project funded by the Italian Ministry of Health (grant number RF-2016-02363298) aiming to investigate the cognitive and neuropsychological effects of a 5-week treatment with therapy based on the regenerative properties of ozone (O3) in a cohort of subjects stratified according to CF scores. We also studied the potential effects of O3 on blood-based biomarkers indicative of specific biological systems that may be altered in CF. Seventy-five older persons were recruited and randomly assigned to receive the active treatment (150 cc of oxygen-O2-O3 mixture at the concentration of 30 µg of O3 per cc of O2), O2, or the placebo (air) for 5 weeks. The main endpoints were the change in the scores of clinical scales from baseline (T0) to weeks 3 (T3), 9 (T9), and 15 (T15) after treatment and the change in biomarker levels resulting from transcriptomics, proteomics, and metabolomic patterns at the same times. The positive results from this study could have important clinical implications.

6.
Sci Rep ; 14(1): 15864, 2024 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982108

RESUMO

In 2019, the novel SARS-CoV-2 coronavirus emerged in China, causing the pneumonia named COVID-19. At the beginning, all research efforts were focused on the spike (S) glycoprotein. However, it became evident that the nucleocapsid (N) protein is pivotal in viral replication, genome packaging and evasion of the immune system, is highly immunogenic, which makes it another compelling target for antibody development alongside the spike protein. This study focused on the construction of single chain fragments variable (scFvs) libraries from SARS-CoV-2-infected patients to establish a valuable, immortalized and extensive antibodies source. We used the Intracellular Antibody Capture Technology to select a panel of scFvs against the SARS-CoV-2 N protein. The whole panel of scFv was expressed and characterized both as intrabodies and recombinant proteins. ScFvs were then divided into 2 subgroups: those that exhibited high binding activity to N protein when expressed in yeast or in mammalian cells as intrabodies, and those purified as recombinant proteins, displaying affinity for recombinant N protein in the nanomolar range. This panel of scFvs against the N protein represents a novel platform for research and potential diagnostic applications.


Assuntos
Anticorpos Antivirais , COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus , SARS-CoV-2 , Anticorpos de Cadeia Única , Humanos , SARS-CoV-2/imunologia , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Fosfoproteínas/imunologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Biblioteca de Peptídeos
7.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928049

RESUMO

The current hypothesis on the pathophysiology of multiple sclerosis (MS) suggests the involvement of both inflammatory and neurodegenerative mechanisms. Disease Modifying Therapies (DMTs) effectively decrease relapse rates, thus reducing relapse-associated disability in people with MS. In some patients, disability progression, however, is not solely linked to new lesions and clinical relapses but can manifest independently. Progression Independent of Relapse Activity (PIRA) significantly contributes to long-term disability, stressing the urge to unveil biomarkers to forecast disease progression. Twenty-five adult patients with relapsing-remitting multiple sclerosis (RRMS) were enrolled in a cohort study, according to the latest McDonald criteria, and tested before and after high-efficacy Disease Modifying Therapies (DMTs) (6-24 months). Through Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells. Multivariate logistic and linear models with interactions were generated. Robustness was assessed by randomization tests in R. A subset of miRNAs, correlated with PIRA, and the Expanded Disability Status Scale (EDSS), was selected. To refine the patient stratification connected to the disease trajectory, we computed a robust logistic classification model derived from baseline miRNA expression to predict PIRA status (AUC = 0.971). We built an optimal multilinear model by selecting four other miRNA predictors to describe EDSS changes compared to baseline. Multivariate modeling offers a promising avenue to uncover potential biomarkers essential for accurate prediction of disability progression in early MS stages. These models can provide valuable insights into developing personalized and effective treatment strategies.


Assuntos
Progressão da Doença , MicroRNAs , Esclerose Múltipla Recidivante-Remitente , Humanos , MicroRNAs/genética , Masculino , Feminino , Adulto , Esclerose Múltipla Recidivante-Remitente/genética , Pessoa de Meia-Idade , Biomarcadores , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Leucócitos Mononucleares/metabolismo , Estudos de Coortes , Recidiva , Perfilação da Expressão Gênica/métodos
8.
Brain ; 147(1): 122-134, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37633263

RESUMO

Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (i) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.


Assuntos
Síndrome de Rett , Humanos , Feminino , Camundongos , Animais , Síndrome de Rett/terapia , Fator de Crescimento Neural/metabolismo , Distribuição Tecidual , Proteína 2 de Ligação a Metil-CpG/genética , Encéfalo/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças
9.
Front Immunol ; 14: 1234869, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152407

RESUMO

Background and objectives: Multiple sclerosis (MS) is a chronic, progressive neurological disease characterized by early-stage neuroinflammation, neurodegeneration, and demyelination that involves a spectrum of heterogeneous clinical manifestations in terms of disease course and response to therapy. Even though several disease-modifying therapies (DMTs) are available to prevent MS-related brain damage-acting on the peripheral immune system with an indirect effect on MS lesions-individualizing therapy according to disease characteristics and prognostic factors is still an unmet need. Given that deregulated miRNAs have been proposed as diagnostic tools in neurodegenerative/neuroinflammatory diseases such as MS, we aimed to explore miRNA profiles as potential classifiers of the relapsing-remitting MS (RRMS) patients' prospects to gain a more effective DMT choice and achieve a preferential drug response. Methods: A total of 25 adult patients with RRMS were enrolled in a cohort study, according to the latest McDonald criteria before (pre-cladribine, pre-CLA; pre-ocrelizumab, pre-OCRE, time T0) and after high-efficacy DMTs, time T1, 6 months post-CLA (n = 10, 7 F and 3 M, age 39.0 ± 7.5) or post-OCRE (n = 15, 10 F and 5 M, age 40.5 ± 10.4) treatment. A total of 15 age- and sex-matched healthy control subjects (9 F and 6 M, age 36.3 ± 3.0) were also selected. By using Agilent microarrays, we analyzed miRNA profiles from peripheral blood mononuclear cells (PBMC). miRNA-target networks were obtained by miRTargetLink, and Pearson's correlation served to estimate the association between miRNAs and outcome clinical features. Results: First, the miRNA profiles of pre-CLA or pre-OCRE RRMS patients compared to healthy controls identified modulated miRNA patterns (40 and seven miRNAs, respectively). A direct comparison of the two pre-treatment groups at T0 and T1 revealed more pro-inflammatory patterns in the pre-CLA miRNA profiles. Moreover, both DMTs emerged as being capable of reverting some dysregulated miRNAs toward a protective phenotype. Both drug-dependent miRNA profiles and specific miRNAs, such as miR-199a-3p, miR-29b-3p, and miR-151a-3p, emerged as potentially involved in these drug-induced mechanisms. This enabled the selection of miRNAs correlated to clinical features and the related miRNA-mRNA network. Discussion: These data support the hypothesis of specific deregulated miRNAs as putative biomarkers in RRMS patients' stratification and DMT drug response.


Assuntos
MicroRNAs , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Adulto , Humanos , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/genética , Cladribina , Esclerose Múltipla/tratamento farmacológico , Leucócitos Mononucleares , Estudos de Coortes
10.
Int J Mol Sci ; 24(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38003427

RESUMO

In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.


Assuntos
Peróxido de Hidrogênio , Receptor trkA , Humanos , Camundongos , Animais , Receptor trkA/metabolismo , Retroalimentação , Peróxido de Hidrogênio/farmacologia , Fator de Crescimento Neural/farmacologia , Fator de Crescimento Neural/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo , Linhagem Celular , Estresse Oxidativo , Células Epiteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA