Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Biomol Chem ; 17(15): 3765-3780, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30887974

RESUMO

Dyes with nonlinear optical (NLO) properties enable new imaging techniques and photonic systems. We have developed a dye (DANPY-1) for photonics applications in biological substrates such as nucleic acids; however, the design specification also enables it to be used for visualizing biomolecules. It is a prototype dye demonstrating a water-soluble, NLO-active fluorophore with high photostability, a large Stokes shift, and a favorable toxicity profile. A practical and scalable synthetic route to DANPY salts has been optimized featuring: (1) convergent Pd-catalyzed Suzuki coupling with pyridine 4-boronic acid, (2) site-selective pyridyl N-methylation, and (3) direct recovery of crystalline intermediates without chromatography. We characterize the optical properties, biocompatibility, and biological staining behavior of DANPY-1. In addition to stability and solubility across a range of polar media, the DANPY-1 chromophore shows a first hyperpolarizability similar to common NLO dyes such as Disperse Red 1 and DAST, a large two-photon absorption cross section for its size, substantial affinity to nucleic acids in vitro, an ability to stain a variety of cellular components, and strong sensitivity of its fluorescence properties to its dielectric environment.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Naftalenos/química , Fármacos Fotossensibilizantes/química , Piridinas/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Morte Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Células HeLa , Humanos , Estrutura Molecular , Naftalenos/síntese química , Naftalenos/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Piridinas/síntese química , Piridinas/farmacologia
2.
Nat Microbiol ; 4(3): 540-542, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30700867

RESUMO

In the version of this Letter originally published, the Methods incorrectly stated that all phytoplankton cultures were sampled in mid-exponential phase. The low-nitrogen cultures were sampled in early stationary phase and at the point at which Fv/Fm values decreased, to indicate that cultures were experiencing low-nitrogen conditions. All other phytoplankton cultures were sampled in exponential phase. Growth and Fv/Fm data are provided here on high- and low-nitrogen cultures (Figs 1, 2 and 3) to clarify and support this correction. The Methods also stated that cell counting was done using a Beckman Multisizer 3 Coulter Counter, but a CASY Model TT Cell Counter was used.

3.
Nat Microbiol ; 3(4): 430-439, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29483657

RESUMO

Dimethylsulfoniopropionate (DMSP) is a globally important organosulfur molecule and the major precursor for dimethyl sulfide. These compounds are important info-chemicals, key nutrients for marine microorganisms, and are involved in global sulfur cycling, atmospheric chemistry and cloud formation1-3. DMSP production was thought to be confined to eukaryotes, but heterotrophic bacteria can also produce DMSP through the pathway used by most phytoplankton 4 , and the DsyB enzyme catalysing the key step of this pathway in bacteria was recently identified 5 . However, eukaryotic phytoplankton probably produce most of Earth's DMSP, yet no DMSP biosynthesis genes have been identified in any such organisms. Here we identify functional dsyB homologues, termed DSYB, in many phytoplankton and corals. DSYB is a methylthiohydroxybutryate methyltransferase enzyme localized in the chloroplasts and mitochondria of the haptophyte Prymnesium parvum, and stable isotope tracking experiments support these organelles as sites of DMSP synthesis. DSYB transcription levels increased with DMSP concentrations in different phytoplankton and were indicative of intracellular DMSP. Identification of the eukaryotic DSYB sequences, along with bacterial dsyB, provides the first molecular tools to predict the relative contributions of eukaryotes and prokaryotes to global DMSP production. Furthermore, evolutionary analysis suggests that eukaryotic DSYB originated in bacteria and was passed to eukaryotes early in their evolution.


Assuntos
Cloroplastos/enzimologia , Haptófitas/enzimologia , Metiltransferases/genética , Mitocôndrias/enzimologia , Compostos de Sulfônio/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Diatomáceas/enzimologia , Diatomáceas/genética , Dinoflagellida/enzimologia , Dinoflagellida/genética , Haptófitas/genética , Metiltransferases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fitoplâncton/metabolismo
4.
Genome Announc ; 4(6)2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27811091

RESUMO

The microalgal division Haptophyta uses a range of nutritional sourcing, including mixotrophy. The genome of a member of this taxon, Chrysochromulina tobin, suggests that interactions with its bacterial cohort are critical for C. tobin physiology. Here, we report the genomes of eight bacterial species in coculture with C. tobin.

5.
PLoS One ; 11(7): e0158614, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27367227

RESUMO

BACKGROUND: Diatoms (Bacilliariophyceae) encode two light-dependent protochlorophyllide oxidoreductases (POR1 and POR2) that catalyze the penultimate step of chlorophyll biosynthesis in the light. Algae live in dynamic environments whose changing light levels induce photoacclimative metabolic shifts, including altered cellular chlorophyll levels. We hypothesized that the two POR proteins may be differentially adaptive under varying light conditions. Using the diatom Phaeodactylum tricornutum as a test system, differences in POR protein abundance and por gene expression were examined when this organism was grown on an alternating light:dark cycles at different irradiances; exposed to continuous light; and challenged by a significant decrease in light availability. RESULTS: For cultures maintained on a 12h light: 12h dark photoperiod at 200µE m-2 s-1 (200L/D), both por genes were up-regulated during the light and down-regulated in the dark, though por1 transcript abundance rose and fell earlier than that of por2. Little concordance occurred between por1 mRNA and POR1 protein abundance. In contrast, por2 mRNA and POR2 protein abundances followed similar diurnal patterns. When 200L/D P. tricornutum cultures were transferred to continuous light (200L/L), the diurnal regulatory pattern of por1 mRNA abundance but not of por2 was disrupted, and POR1 but not POR2 protein abundance dropped steeply. Under 1200µE m-2 s-1 (1200L/D), both por1 mRNA and POR1 protein abundance displayed diurnal oscillations. A compromised diel por2 mRNA response under 1200L/D did not impact the oscillation in POR2 abundance. When cells grown at 1200L/D were then shifted to 50µE m-2 s-1 (50L/D), por1 and por2 mRNA levels decreased swiftly but briefly upon light reduction. Thereafter, POR1 but not POR2 protein levels rose significantly in response to this light stepdown. CONCLUSION: Given the sensitivity of diatom por1/POR1 to real-time light cues and adherence of por2/POR2 regulation to the diurnal cycle, we suggest that POR1 supports photoacclimation, whereas POR2 is the workhorse for daily chlorophyll synthesis.


Assuntos
Diatomáceas/metabolismo , Diatomáceas/efeitos da radiação , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Luz , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Aclimatação/efeitos da radiação , Sequência de Aminoácidos , Proliferação de Células/efeitos da radiação , Clorofila/biossíntese , Escuridão , Diatomáceas/citologia , Diatomáceas/genética , Evolução Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Transcrição Gênica/efeitos da radiação
6.
PLoS Genet ; 11(9): e1005469, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397803

RESUMO

Haptophytes are recognized as seminal players in aquatic ecosystem function. These algae are important in global carbon sequestration, form destructive harmful blooms, and given their rich fatty acid content, serve as a highly nutritive food source to a broad range of eco-cohorts. Haptophyte dominance in both fresh and marine waters is supported by the mixotrophic nature of many taxa. Despite their importance the nuclear genome sequence of only one haptophyte, Emiliania huxleyi (Isochrysidales), is available. Here we report the draft genome sequence of Chrysochromulina tobin (Prymnesiales), and transcriptome data collected at seven time points over a 24-hour light/dark cycle. The nuclear genome of C. tobin is small (59 Mb), compact (∼ 40% of the genome is protein coding) and encodes approximately 16,777 genes. Genes important to fatty acid synthesis, modification, and catabolism show distinct patterns of expression when monitored over the circadian photoperiod. The C. tobin genome harbors the first hybrid polyketide synthase/non-ribosomal peptide synthase gene complex reported for an algal species, and encodes potential anti-microbial peptides and proteins involved in multidrug and toxic compound extrusion. A new haptophyte xanthorhodopsin was also identified, together with two "red" RuBisCO activases that are shared across many algal lineages. The Chrysochromulina tobin genome sequence provides new information on the evolutionary history, ecology and economic importance of haptophytes.


Assuntos
Aptidão Genética , Genoma/genética , Haptófitas/genética , Ribulose-Bifosfato Carboxilase/genética , Sequência de Bases , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Filogenia , Análise de Sequência de DNA
7.
BMC Evol Biol ; 15: 16, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25887237

RESUMO

BACKGROUND: Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light-independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages. RESULTS: A phylogenetic reconstruction of the history of the POR enzyme (encoded by the por gene in nuclei) in eukaryotic algae reveals replacement and supplementation of ancestral por genes in several taxa with horizontally transferred por genes from other eukaryotic algae. For example, stramenopiles and haptophytes share por gene duplicates of prasinophytic origin, although their plastid ancestry predicts a rhodophytic por signal. Phylogenetically, stramenopile pors appear ancestral to those found in haptophytes, suggesting transfer from stramenopiles to haptophytes by either horizontal or endosymbiotic gene transfer. In dinoflagellates whose plastids have been replaced by those of a haptophyte or diatom, the ancestral por genes seem to have been lost whereas those of the new symbiotic partner are present. Furthermore, many chlorarachniophytes and peridinin-containing dinoflagellates possess por gene duplicates. In contrast to the retention, gain, and frequent duplication of algal por genes, the LIPOR gene complement (chloroplast-encoded chlL, chlN, and chlB genes) is often absent. LIPOR genes have been lost from haptophytes and potentially from the euglenid and chlorarachniophyte lineages. Within the chlorophytes, rhodophytes, cryptophytes, heterokonts, and chromerids, some taxa possess both POR and LIPOR genes while others lack LIPOR. The gradual process of LIPOR gene loss is evidenced in taxa possessing pseudogenes or partial LIPOR gene compliments. No horizontal transfer of LIPOR genes was detected. CONCLUSIONS: We document a pattern of por gene acquisition and expansion as well as loss of LIPOR genes from many algal taxa, paralleling the presence of multiple por genes and lack of LIPOR genes in the angiosperms. These studies present an opportunity to compare the regulation and function of por gene families that have been acquired and expanded in patterns unique to each of various algal taxa.


Assuntos
Cianobactérias/genética , Dinoflagellida/genética , Eucariotos/genética , Transferência Genética Horizontal , Estramenópilas/genética , Sequência de Aminoácidos , Núcleo Celular/genética , Clorofila/genética , Clorofila A , Cloroplastos/genética , Dinoflagellida/citologia , Eucariotos/classificação , Eucariotos/citologia , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Filogenia , Alinhamento de Sequência , Estramenópilas/citologia , Simbiose
8.
BMC Genomics ; 15: 604, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25034814

RESUMO

BACKGROUND: Haptophytes are widely and abundantly distributed in both marine and freshwater ecosystems. Few genomic analyses of representatives within this taxon have been reported, despite their early evolutionary origins and their prominent role in global carbon fixation. RESULTS: The complete mitochondrial and chloroplast genome sequences of the haptophyte Chrysochromulina tobin (Prymnesiales) provide insight into the architecture and gene content of haptophyte organellar genomes. The mitochondrial genome (~34 kb) encodes 21 protein coding genes and contains a complex, 9 kb tandem repeat region. Similar to other haptophytes and rhodophytes, but not cryptophytes or stramenopiles, the mitochondrial genome has lost the nad7, nad9 and nad11 genes. The ~105 kb chloroplast genome encodes 112 protein coding genes, including ycf39 which has strong structural homology to NADP-binding nitrate transcriptional regulators; a divergent 'CheY-like' two-component response regulator (ycf55) and Tic/Toc (ycf60 and ycf80) membrane transporters. Notably, a zinc finger domain has been identified in the rpl36 ribosomal protein gene of all chloroplasts sequenced to date with the exception of haptophytes and cryptophytes--algae that have gained (via lateral gene transfer) an alternative rpl36 lacking the zinc finger motif. The two C. tobin chloroplast ribosomal RNA operon spacer regions differ in tRNA content. Additionally, each ribosomal operon contains multiple single nucleotide polymorphisms (SNPs)--a pattern observed in rhodophytes and cryptophytes, but few stramenopiles. Analysis of small (<200 bp) chloroplast encoded tandem and inverted repeats in C. tobin and 78 other algal chloroplast genomes show that repeat type, size and location are correlated with gene identity and taxonomic clade. CONCLUSION: The Chrysochromulina tobin organellar genomes provide new insight into organellar function and evolution. These are the first organellar genomes to be determined for the prymnesiales, a taxon that is present in both oceanic and freshwater systems and represents major primary photosynthetic producers and contributors to global ecosystem stability.


Assuntos
Genoma de Cloroplastos , Genoma Mitocondrial , Haptófitas/genética , Mapeamento Cromossômico , Sequência Conservada , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Fases de Leitura Aberta , Óperon , Filogenia , Sequências Repetitivas de Ácido Nucleico , Proteínas Ribossômicas/genética , Análise de Sequência de DNA , Transdução de Sinais , Homologia Estrutural de Proteína
10.
BMC Genomics ; 15: 212, 2014 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-24646409

RESUMO

BACKGROUND: Microalgae in the genus Nannochloropsis are photosynthetic marine Eustigmatophytes of significant interest to the bioenergy and aquaculture sectors due to their ability to efficiently accumulate biomass and lipids for utilization in renewable transportation fuels, aquaculture feed, and other useful bioproducts. To better understand the genetic complement that drives the metabolic processes of these organisms, we present the assembly and comparative pangenomic analysis of the chloroplast and mitochondrial genomes from Nannochloropsis salina CCMP1776. RESULTS: The chloroplast and mitochondrial genomes of N. salina are 98.4% and 97% identical to their counterparts in Nannochloropsis gaditana. Comparison of the Nannochloropsis pangenome to other algae within and outside of the same phyla revealed regions of significant genetic divergence in key genes that encode proteins needed for regulation of branched chain amino synthesis (acetohydroxyacid synthase), carbon fixation (RuBisCO activase), energy conservation (ATP synthase), protein synthesis and homeostasis (Clp protease, ribosome). CONCLUSIONS: Many organellar gene modifications in Nannochloropsis are unique and deviate from conserved orthologs found across the tree of life. Implementation of secondary and tertiary structure prediction was crucial to functionally characterize many proteins and therefore should be implemented in automated annotation pipelines. The exceptional similarity of the N. salina and N. gaditana organellar genomes suggests that N. gaditana be reclassified as a strain of N. salina.


Assuntos
Genoma , Estramenópilas/genética , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/genética , Complexos de ATP Sintetase/metabolismo , Sequência de Aminoácidos , Cloroplastos/genética , Genoma Mitocondrial , Mitocôndrias/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Família Multigênica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Transcriptoma
11.
PLoS One ; 8(10): e76663, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124586

RESUMO

Many species of harmful algae transition between a motile, vegetative stage in the water column and a non-motile, resting stage in the sediments. Physiological and behavioral traits expressed during benthic-pelagic transition potentially regulate the timing, location and persistence of blooms. The roles of key physiological and behavioral traits involved in resting cell emergence and bloom formation were examined in two geographically distinct strains of the harmful alga, Heterosigma akashiwo. Physiological measures of cell viability, division and population growth, and cell fatty acid content were made using flow cytometry and gas chromatography - mass spectrometry techniques as cells transitioned between the benthic resting stage and the vegetative pelagic stage. Video-based tracking was used to quantify cell-level swimming behaviors. Data show increased temperature and light triggered rapid emergence from the resting stage and initiated cell swimming. Algal strains varied in important physiological and behavioral traits, including survivorship during life-stage transitions, population growth rates and swimming velocities. Collectively, these traits function as "population growth strategies" that can influence bloom formation. Many resting cells regained the up-swimming capacity necessary to cross an environmentally relevant halocline and the ability to aggregate in near-surface waters within hours after vegetative growth supporting conditions were restored. Using a heuristic model, we illustrate how strain-specific population growth strategies can govern the timescales over which H. akashiwo blooms form. Our findings highlight the need for identification and quantification of strain-specific physiological and behavioral traits to improve mechanistic understanding of bloom formation and successful bloom prediction.


Assuntos
Proliferação Nociva de Algas , Estramenópilas/fisiologia , Divisão Celular , Movimento Celular , Sobrevivência Celular , Escuridão , Ácidos Graxos/metabolismo , Luz , Metabolismo dos Lipídeos
12.
J Am Oil Chem Soc ; 88(9): 1329-1338, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21909157

RESUMO

Fatty acid analysis is essential to a broad range of applications including those associated with the nascent algal biofuel and algal bioproduct industries. Current fatty acid profiling methods require lengthy, sequential extraction and transesterification steps necessitating significant quantities of analyte. We report the development of a rapid, microscale, single-step, in situ protocol for GC-MS lipid analysis that requires only 250 µg dry mass per sample. We furthermore demonstrate the broad applications of this technique by profiling the fatty acids of several algal species, small aquatic organisms, insects and terrestrial plant material. When combined with fluorescent techniques utilizing the BODIPY dye family and flow cytometry, this micro-assay serves as a powerful tool for analyzing fatty acids in laboratory and field collected samples, for high-throughput screening, and for crop assessment. Additionally, the high sensitivity of the technique allows for population analyses across a wide variety of taxa.

13.
J Biosci Bioeng ; 109(2): 198-201, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20129108

RESUMO

We report here that BODIPY 505/515, a green lipophilic fluorescent dye, serves as an excellent vital stain for the oil-containing lipid bodies of live algal cells. BODIPY 505/515 vital staining can be used in combination with fluorescent activated cell sorting to detect and isolate algal cells possessing high lipid content.


Assuntos
Compostos de Boro/química , Eucariotos/citologia , Corantes Fluorescentes/química , Eucariotos/química , Citometria de Fluxo , Microscopia Confocal
14.
BMC Genomics ; 9: 211, 2008 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-18462506

RESUMO

BACKGROUND: Heterokont algae form a monophyletic group within the stramenopile branch of the tree of life. These organisms display wide morphological diversity, ranging from minute unicells to massive, bladed forms. Surprisingly, chloroplast genome sequences are available only for diatoms, representing two (Coscinodiscophyceae and Bacillariophyceae) of approximately 18 classes of algae that comprise this taxonomic cluster. A universal challenge to chloroplast genome sequencing studies is the retrieval of highly purified DNA in quantities sufficient for analytical processing. To circumvent this problem, we have developed a simplified method for sequencing chloroplast genomes, using fosmids selected from a total cellular DNA library. The technique has been used to sequence chloroplast DNA of two Heterosigma akashiwo strains. This raphidophyte has served as a model system for studies of stramenopile chloroplast biogenesis and evolution. RESULTS: H. akashiwo strain CCMP452 (West Atlantic) chloroplast DNA is 160,149 bp in size with a 21,822-bp inverted repeat, whereas NIES293 (West Pacific) chloroplast DNA is 159,370 bp in size and has an inverted repeat of 21,665 bp. The fosmid cloning technique reveals that both strains contain an isomeric chloroplast DNA population resulting from an inversion of their single copy domains. Both strains contain multiple small inverted and tandem repeats, non-randomly distributed within the genomes. Although both CCMP452 and NIES293 chloroplast DNAs contains 197 genes, multiple nucleotide polymorphisms are present in both coding and intergenic regions. Several protein-coding genes contain large, in-frame inserts relative to orthologous genes in other plastids. These inserts are maintained in mRNA products. Two genes of interest in H. akashiwo, not previously reported in any chloroplast genome, include tyrC, a tyrosine recombinase, which we hypothesize may be a result of a lateral gene transfer event, and an unidentified 456 amino acid protein, which we hypothesize serves as a G-protein-coupled receptor. The H. akashiwo chloroplast genomes share little synteny with other algal chloroplast genomes sequenced to date. CONCLUSION: The fosmid cloning technique eliminates chloroplast isolation, does not require chloroplast DNA purification, and reduces sequencing processing time. Application of this method has provided new insights into chloroplast genome architecture, gene content and evolution within the stramenopile cluster.


Assuntos
Genoma de Cloroplastos , Phaeophyceae/genética , Proteínas de Algas/genética , Sequência de Aminoácidos , Oceano Atlântico , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Sequência Conservada , DNA de Algas/genética , DNA de Algas/isolamento & purificação , DNA de Cloroplastos/genética , DNA de Cloroplastos/isolamento & purificação , Furanos , Dados de Sequência Molecular , Oceano Pacífico , Phaeophyceae/classificação , Phaeophyceae/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Recombinases/genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA/métodos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Tiofenos
15.
BMC Evol Biol ; 7: 70, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17477873

RESUMO

BACKGROUND: Maintenance of homeostasis requires that an organism perceive selected physical and chemical signals within an informationally dense environment. Functionally, an organism uses a variety of signal transduction arrays to amplify and convert these perceived signals into appropriate gene transcriptional responses. These changes in gene expression serve to modify selective metabolic processes and thus optimize reproductive success. Here we analyze a chloroplast-encoded His-to-Asp signal transduction circuit in the stramenopile Heterosigma akashiwo (Hada) Hada ex Y. Hara et Chihara [syn. H. carterae (Hulburt) F.J.R. Taylor]. The presence, structure and putative function of this protein pair are discussed in the context of their evolutionary homologues. RESULTS: Bioinformatic analysis of the Heterosigma akashiwo chloroplast genome sequence revealed the presence of a single two-component His-to-Asp (designated Tsg1/Trg1) pair in this stramenopile (golden-brown alga). These data represent the first documentation of a His-to-Asp array in stramenopiles and counter previous reports suggesting that such regulatory proteins are lacking in this taxonomic cluster. Comparison of the 43 kDa H. akashiwo Tsg1 with bacterial sensor kinases showed that the algal protein exhibits a moderately maintained PAS motif in the sensor kinase domain as well as highly conserved H, N, G1 and F motifs within the histidine kinase ATP binding site. Molecular modelling of the 27 kDa H. akashiwo Trg1 regulator protein was consistent with a winged helix-turn-helix identity - a class of proteins that is known to impact gene expression at the level of transcription. The occurrence of Trg1 protein in actively growing H. akashiwo cells was verified by Western analysis. The presence of a PhoB-like RNA polymerase loop in Trg1 and its homologues in the red-algal lineage support the hypothesis that Trg1 and its homologues interact with a sigma 70 (sigma70) subunit (encoded by rpoD) of a eubacterial type polymerase. Sequence analysis of H. akashiwo rpoD showed this nuclear-encoded gene has a well-defined 4.2 domain, a region that augments RNA polymerase interaction with transcriptional regulatory proteins and also serves in -35 promoter recognition. The presence/loss of the His-to-Asp pairs in primary and secondary chloroplast lineages is assessed. CONCLUSION: His-to-Asp signal transduction components are found in most rhodophytic chloroplasts, as well as in their putative cyanobacterial progenitors. The evolutionary conservation of these proteins argues that they are important for the maintenance of chloroplast homeostasis. Our data suggest that chloroplast gene transcription may be impacted by the interaction of the His-to-Asp regulator protein (which is less frequently lost than the sensor protein) with the RNA polymerase sigma70 subunit.


Assuntos
Proteínas de Algas/genética , Cloroplastos/genética , Chrysophyta/genética , Regulação da Expressão Gênica , Transdução de Sinais , Fatores de Transcrição/genética , Ácido Aspártico/genética , Histidina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...