Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 19965, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402874

RESUMO

Dromaeosaurids were bird-like dinosaurs with a predatory ecology known to forage on fish, mammals and other dinosaurs. We describe Daurlong wangi gen. et sp. nov., a dromaeosaurid from the Lower Cretaceous Jehol Biota of Inner Mongolia, China. Exceptional preservation in this specimen includes a large bluish layer in the abdomen which represents one of the few occurrences of intestinal remnants among non-avian dinosaurs. Phylogenetically, Daurlong nests among a lineage of short-armed Jehol Biota species closer to eudromaeosaurs than microraptorines. The topographic correspondence between the exceptionally preserved intestine in the more stem-ward Scipionyx and the remnants in the more birdlike Daurlong provides a phylogenetic framework for inferring intestine tract extent in other theropods lacking fossilized visceral tissues. Gastrointestinal organization results conservative among faunivorous dinosaurs, with the evolution of a bird-like alimentary canal restricted to avialan theropods.


Assuntos
Dinossauros , Animais , Dinossauros/anatomia & histologia , Filogenia , Fósseis , Evolução Biológica , Aves , Intestinos , Mamíferos
2.
PeerJ ; 10: e12727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821895

RESUMO

Eotyrannus lengi Hutt et al., 2001 from the Lower Cretaceous Wessex Formation (part of the Wealden Supergroup) of the Isle of Wight, southern England, is described in detail, compared with other theropods, and evaluated in a new phylogenetic analysis. Eotyrannus is represented by a single individual that would have been c. 4.5 m long; it preserves the anterior part of the skull, a partial forelimb and pectoral girdle, various cervical, dorsal and caudal vertebrae, rib fragments, part of the ilium, and hindlimb elements excluding the femur. Lack of fusion with regard to both neurocentral and sacral sutures indicates subadult status. Eotyrannus possesses thickened, fused, pneumatic nasals with deep lateral recesses, elongate, tridactyl forelimbs and a tyrannosaurid-like scapulocoracoid. The short preantorbital ramus of the maxilla and nasals that are approximately seven times longer than they are wide show that Eotyrannus was not longirostrine. A posterodorsally inclined ridge on the ilium's lateral surface fails to reach the dorsal margin: a configuration seen elsewhere in Juratyrant. Eotyrannus is not arctometatarsalian. Autapomorphies include the presence of curving furrows on the dentary, a block-like humeral entepicondyle, and a distoproximally aligned channel close to the distolateral border of the tibia. Within Tyrannosauroidea, E. lengi is phylogenetically intermediate between Proceratosauridae and Yutyrannus and the clade that includes Xiongguanlong, Megaraptora, Dryptosaurus and Tyrannosauridae. We do not find support for a close affinity between Eotyrannus and Juratyrant. Our analysis supports the inclusion of Megaraptora within Tyrannosauroidea and thus increases Cretaceous tyrannosauroid diversity and disparity. A proposal that Eotyrannus might belong within Megaraptora, however, is based on character states not present in the taxon. Several theropods from the Wessex Formation are based on material that overlaps with the E. lengi holotype but none can be shown to be synonymous with it.


Assuntos
Dinossauros , Fósseis , Animais , Filogenia , Osteologia , Crânio/anatomia & histologia , Tíbia , Dinossauros/anatomia & histologia
3.
PeerJ ; 9: e12640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34963824

RESUMO

Borogovia gracilicrus is a small-bodied theropod dinosaur from the Maastrichtian (Upper Cretaceous) Nemegt Formation of southern Mongolia. The taxon is based on a single fragmentary specimen preserving only the distal part of the hindlimbs. The morphology of Borogovia shows a peculiar combination of features, some of which are traditionally considered troodontid synapomorphies and others which are unusual for Troodontidae but are shared with other maniraptoran clades. In particular, the second toe of B. gracilicrus differs from other troodontids in lacking some of the features which contribute to the specialized 'sickle-clawed' second toe, here termed the 'falciphoran condition', shared with dromaeosaurids and some other paravians, such as the strongly compressed and falciform ungual. Phylogeny reconstructions intended to explore the affinities of Borogovia consistently support its referral within a subclade of troodontids including all Late Cretaceous taxa. The placement of Borogovia is not significantly affected by its unusual combinations of hindlimb features or by the homoplasy of the elements forming the falciphoran condition. Borogovia is supported as a valid taxon and is distinct from the other Nemegt troodontids, Tochisaurus and Zanabazar. The lack of a falciform ungual, and the distinctive morphology of the second toe in B. gracilicrus are interpreted as a derived specialization among Troodontidae and not as retention of the plesiomorphic condition of non-paravian theropods.

4.
Sci Rep ; 11(1): 19340, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588472

RESUMO

Spinosaurids are among the most distinctive and yet poorly-known of large-bodied theropod dinosaurs, a situation exacerbated by their mostly fragmentary fossil record and competing views regarding their palaeobiology. Here, we report two new Early Cretaceous spinosaurid specimens from the Wessex Formation (Barremian) of the Isle of Wight. Large-scale phylogenetic analyses using parsimony and Bayesian techniques recover the pair in a new clade within Baryonychinae that also includes the hypodigm of the African spinosaurid Suchomimus. Both specimens represent distinct and novel taxa, herein named Ceratosuchops inferodios gen. et sp. nov. and Riparovenator milnerae gen. et sp. nov. A palaeogeographic reconstruction suggests a European origin for Spinosauridae, with at least two dispersal events into Africa. These new finds provide welcome information on poorly sampled areas of spinosaurid anatomy, suggest that sympatry was present and potentially common in baryonychines and spinosaurids as a whole, and contribute to updated palaeobiogeographic reconstructions for the clade.

5.
Sci Rep ; 11(1): 14722, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282248

RESUMO

The furcula is a distinctive element of the pectoral skeleton in birds, which strengthens the shoulder region to withstand the rigor of flight. Although its origin among theropod dinosaurs is now well-supported, the homology of the furcula relative to the elements of the tetrapod pectoral girdle (i.e., interclavicle vs clavicles) remains controversial. Here, we report the identification of the furcula in the birdlike theropod Halszkaraptor escuilliei. The bone is unique among furculae in non-avian dinosaurs in bearing a visceral articular facet in the hypocleideal end firmly joined to and overlapped by the sternal plates, a topographical pattern that supports the primary homology of the furcula with the interclavicle. The transformation of the interclavicle into the furcula in early theropods is correlated to the loss of the clavicles, and reinforced the interconnection between the contralateral scapulocoracoids, while relaxing the bridge between the scapulocoracoids with the sternum. The function of the forelimbs in theropod ancestors shifted from being a component of the locomotory quadrupedal module to an independent module specialized to grasping. The later evolution of novel locomotory modules among maniraptoran theropods, involving the forelimbs, drove the re-acquisition of a tighter connection between the scapulocoracoids and the interclavicle with the sternal complex.

6.
PeerJ ; 8: e8941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322442

RESUMO

Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species-level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the predators/scavengers and polycotylids as their prey. The first mosasauroids differed from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence suggests that early representatives of Mosasauroidea diversified after competitions with plesiosaurs. Nevertheless, some mosasauroids, such as tylosaurines, might have seized the opportunity and occupied the niche previously inhabited by brachauchenines, around or immediately after they became extinct, and by polycotylids that decreased their phylogenetic diversity and disparity around the time the large-sized tylosaurines started to flourish.

7.
PeerJ ; 8: e8672, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140312

RESUMO

The dromaeosaurid theropod Halszkaraptor escuilliei is characterized by several unusual features absent in other paravians, part of which has been interpreted as diagnostic of a novel lineage adapted to a semiaquatic ecology. Recently, these evolutionary and ecological interpretations have been challenged, and Halszkaraptor has been claimed to be a transitional form between non-dromaeosaurid maniraptoriforms and other dromaeosaurids: following that reevaluation, its peculiar body plan would represent the retention of several maniraptoran plesiomorphies, lost among other dromaeosaurids, and not an adaptation to a novel ecology. This alternative scenario is here carefully investigated and tested. It is shown that most statements supporting this scenario are based on misinterpretation of anatomical traits and bibliography. Once these statements have been corrected, character state transition optimization over a well-supported phylogenetic framework indicates that the large majority of the peculiar features of the Halszkaraptor lineage are derived novelties acquired by the latter after its divergence from the last ancestor shared with eudromaeosaurs, and thus are not maniraptoriform plesiomorphies. At least seven novelties of the Halszkaraptor lineage are convergently acquired with spinosaurids, and are integrated in semiaquatic adaptations: one of these is reported here for the first time. The amount of morphological divergence of Halszkaraptorinae from the ancestral dromaeosaurid condition is comparable to those of Microraptorinae and Velociraptorinae. Among extant taxa, the sawbills (Mergini, Anseriformes) show the closest ecomorphological similarity with the peculiar body plan inferred for Halszkaraptor. The halszkaraptorine bauplan is thus confirmed as a derived amphibious specialization, and does not represent a "transitional" stage along the evolution of dromaeosaurids.

8.
PeerJ ; 7: e7364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523492

RESUMO

Neptunidraco ammoniticus is a thalattosuchian crocodylomorph from the Rosso Ammonitico Veronese Formation (RAVF, Middle Jurassic) of northern Italy. Erected from one partial specimen, Neptunidraco is pivotal in reconstructing thalattosuchian evolution, being it the oldest known member of Metriorhynchidae. Two additional RAVF thalattosuchians have been referred to Neptunidraco. A revised diagnosis of N. ammoniticus is provided here. Using a well-sampled phylogenetic data set of Crocodylomorpha, the affinities of all three RAVF thalattosuchian specimens are investigated simultaneously for the first time using parsimony tree-search strategies and Bayesian inference using the Fossilized Birth-Death with Sampled Ancestor (FBDSA) model. The results of the alternative analyses are not consistent in the placement of the RAVF specimens. The holotype of N. ammoniticus is consequently referred to Metriorhynchidae incertae sedis. The first referred specimen is recovered in various alternative placements among Metriorhynchoidea. The third and most fragmentary specimen is recovered as a crocodylomorph of uncertain affinities in the parsimony analysis and in the undated Bayesian analysis, and a metriorhynchoid sister taxon of the second RAVF specimen in the tip-dated Bayesian analysis. Only a subset of the results in the parsimony-based analyses supports the referral of the latter two specimens to Neptunidraco. The unusually high rate of morphological divergence for the Neptunidraco branch, inferred in previous iterations of the Bayesian inference analyses but not recovered in the novel analysis, was likely an artifact of the a priori constraint of all RAVF thalattosuchians into a single taxonomic unit, and of the arbitrarily fixed tip-age priors for the terminal taxa. These results confirm the utility of specimen-level morphological analysis and of combined tree-search strategies for inferring the affinities and the inclusiveness of fragmentary but significant fossil taxa, and reinforce the importance of incorporating stratigraphic uncertainty as prior in tip-dated Bayesian inference analyses.

9.
PeerJ ; 6: e5976, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588396

RESUMO

The homology of the tridactyl hand of birds is a still debated subject, with both paleontological and developmental evidence used in support of alternative identity patterns in the avian fingers. With its simplified phalangeal morphology, the Late Jurassic ceratosaurian Limusaurus has been argued to support a II-III-IV digital identity in birds and a complex pattern of homeotic transformations in three-fingered (tetanuran) theropods. We report a new large-bodied theropod, Saltriovenator zanellai gen. et sp. nov., based on a partial skeleton from the marine Saltrio Formation (Sinemurian, lowermost Jurassic) of Lombardy (Northern Italy). Taphonomical analyses show bone bioerosion by marine invertebrates (first record for dinosaurian remains) and suggest a complex history for the carcass before being deposited on a well-oxygenated and well-illuminated sea bottom. Saltriovenator shows a mosaic of features seen in four-fingered theropods and in basal tetanurans. Phylogenetic analysis supports sister taxon relationships between the new Italian theropod and the younger Early Jurassic Berberosaurus from Morocco, in a lineage which is the basalmost of Ceratosauria. Compared to the atrophied hand of later members of Ceratosauria, Saltriovenator demonstrates that a fully functional hand, well-adapted for struggling and grasping, was primitively present in ceratosaurians. Ancestral state reconstruction along the avian stem supports 2-3-4-1-X and 2-3-4-0-X as the manual phalangeal formulae at the roots of Ceratosauria and Tetanurae, confirming the I-II-III pattern in the homology of the avian fingers. Accordingly, the peculiar hand of Limusaurus represents a derived condition restricted to late-diverging ceratosaurians and cannot help in elucidating the origin of the three-fingered condition of tetanurans. The evolution of the tridactyl hand of birds is explained by step-wise lateral simplification among non-tetanuran theropod dinosaurs, followed by a single primary axis shift from digit position 4 to 3 at the root of Tetanurae once the fourth finger was completely lost, which allowed independent losses of the vestigial fourth metacarpal among allosaurians, tyrannosauroids, and maniraptoromorphs. With an estimated body length of 7.5 m, Saltriovenator is the largest and most robust theropod from the Early Jurassic, pre-dating the occurrence in theropods of a body mass approaching 1,000 Kg by over 25 My. The radiation of larger and relatively stockier averostran theropods earlier than previously known may represent one of the factors that ignited the trend toward gigantism in Early Jurassic sauropods.

10.
PeerJ ; 6: e4868, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868277

RESUMO

Hulsanpes perlei is an enigmatic theropod dinosaur from the Baruungoyot Formation (?mid- to upper Campanian, Upper Cretaceous) of Mongolia. It was discovered in 1970, during the third Polish-Mongolian paleontological expedition to the Nemegt Basin. The taxon is known based on a partial braincase and an incomplete right hindlimb. However, the braincase fragment has never been described nor illustrated. We redescribe all elements that form the holotype of Hulsanpes and discuss the affinities of this taxon. The braincase fragment is interpreted as belonging to the inner ear region, and includes the floccular recess and part of the labyrinth. Hulsanpes perlei is confirmed as a valid taxon, diagnosed by a unique combination of metatarsal characters, including two autapomorphies. Historically, it represents the oldest record of the recently-established clade Halszkaraptorinae. Our findings identify subcursorial adaptations for Hulsanpes, shared with Mahakala, and differentiating them from Halszkaraptor. As such, appendicular disparity in the potentially sympatric halszkaraptorines suggest a reduced ecological overlap among these taxa, which may explain the co-occurrence of multiple species of this clade during the latest Cretaceous in what is now the Nemegt Basin.

11.
Nature ; 552(7685): 395-399, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29211712

RESUMO

Maniraptora includes birds and their closest relatives among theropod dinosaurs. During the Cretaceous period, several maniraptoran lineages diverged from the ancestral coelurosaurian bauplan and evolved novel ecomorphologies, including active flight, gigantism, cursoriality and herbivory. Propagation X-ray phase-contrast synchrotron microtomography of a well-preserved maniraptoran from Mongolia, still partially embedded in the rock matrix, revealed a mosaic of features, most of them absent among non-avian maniraptorans but shared by reptilian and avian groups with aquatic or semiaquatic ecologies. This new theropod, Halszkaraptor escuilliei gen. et sp. nov., is related to other enigmatic Late Cretaceous maniraptorans from Mongolia in a novel clade at the root of Dromaeosauridae. This lineage adds an amphibious ecomorphology to those evolved by maniraptorans: it acquired a predatory mode that relied mainly on neck hyperelongation for food procurement, it coupled the obligatory bipedalism of theropods with forelimb proportions that may support a swimming function, and it developed postural adaptations convergent with short-tailed birds.


Assuntos
Aves/anatomia & histologia , Dinossauros/anatomia & histologia , Dinossauros/classificação , Síncrotrons , Adaptação Fisiológica , Animais , Organismos Aquáticos/classificação , Dinossauros/fisiologia , Membro Anterior/anatomia & histologia , Mongólia , Pescoço/anatomia & histologia , Filogenia , Crânio/anatomia & histologia , Natação , Cauda/anatomia & histologia
12.
PeerJ ; 5: e3782, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28929018

RESUMO

Mosasauroid squamates represented the apex predators within the Late Cretaceous marine and occasionally also freshwater ecosystems. Proper understanding of the origin of their ecological adaptations or paleobiogeographic dispersals requires adequate knowledge of their phylogeny. The studies assessing the position of mosasauroids on the squamate evolutionary tree and their origins have long given conflicting results. The phylogenetic relationships within Mosasauroidea, however, have experienced only little changes throughout the last decades. Considering the substantial improvements in the development of phylogenetic methodology that have undergone in recent years, resulting, among others, in numerous alterations in the phylogenetic hypotheses of other fossil amniotes, we test the robustness in our understanding of mosasauroid beginnings and their evolutionary history. We re-examined a data set that results from modifications assembled in the course of the last 20 years and performed multiple parsimony analyses and Bayesian tip-dating analysis. Following the inferred topologies and the 'weak spots' in the phylogeny of mosasauroids, we revise the nomenclature of the 'traditionally' recognized mosasauroid clades, to acknowledge the overall weakness among branches and the alternative topologies suggested previously, and discuss several factors that might have an impact on the differing phylogenetic hypotheses and their statistical support.

13.
Naturwissenschaften ; 104(9-10): 74, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28831510

RESUMO

Genuine fossils with exquisitely preserved plumage from the Late Jurassic and Early Cretaceous of northeastern China have recently revealed that bird-like theropod dinosaurs had long pennaceous feathers along their hindlimbs and may have used their four wings to glide or fly. Thus, it has been postulated that early bird flight might initially have involved four wings (Xu et al. Nature 421:335-340, 2003; Hu et al. Nature 461:640-643, 2009; Han et al. Nat Commun 5:4382, 2014). Here, we describe Serikornis sungei gen. et sp. nov., a new feathered theropod from the Tiaojishan Fm (Late Jurassic) of Liaoning Province, China. Its skeletal morphology suggests a ground-dwelling ecology with no flying adaptations. Our phylogenetic analysis places Serikornis, together with other Late Jurassic paravians from China, as a basal paravians, outside the Eumaniraptora clade. The tail of Serikornis is covered proximally by filaments and distally by slender rectrices. Thin symmetrical remiges lacking barbules are attached along its forelimbs and elongate hindlimb feathers extend up to its toes, suggesting that hindlimb remiges evolved in ground-dwelling maniraptorans before being co-opted to an arboreal lifestyle or flight.


Assuntos
Plumas , Animais , Evolução Biológica , Aves , China , Dinossauros , Fósseis , Filogenia
14.
PeerJ ; 5: e3055, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265519

RESUMO

Bayesian phylogenetic methods integrating simultaneously morphological and stratigraphic information have been applied increasingly among paleontologists. Most of these studies have used Bayesian methods as an alternative to the widely-used parsimony analysis, to infer macroevolutionary patterns and relationships among species-level or higher taxa. Among recently introduced Bayesian methodologies, the Fossilized Birth-Death (FBD) model allows incorporation of hypotheses on ancestor-descendant relationships in phylogenetic analyses including fossil taxa. Here, the FBD model is used to infer the relationships among an ingroup formed exclusively by fossil individuals, i.e., dipnoan tooth plates from four localities in the Ain el Guettar Formation of Tunisia. Previous analyses of this sample compared the results of phylogenetic analysis using parsimony with stratigraphic methods, inferred a high diversity (five or more genera) in the Ain el Guettar Formation, and interpreted it as an artifact inflated by depositional factors. In the analysis performed here, the uncertainty on the chronostratigraphic relationships among the specimens was included among the prior settings. The results of the analysis confirm the referral of most of the specimens to the taxa Asiatoceratodus, Equinoxiodus, Lavocatodus and Neoceratodus, but reject those to Ceratodus and Ferganoceratodus. The resulting phylogeny constrained the evolution of the Tunisian sample exclusively in the Early Cretaceous, contrasting with the previous scenario inferred by the stratigraphically-calibrated topology resulting from parsimony analysis. The phylogenetic framework also suggests that (1) the sampled localities are laterally equivalent, (2) but three localities are restricted to the youngest part of the section; both results are in agreement with previous stratigraphic analyses of these localities. The FBD model of specimen-level units provides a novel tool for phylogenetic inference among fossils but also for independent tests of stratigraphic scenarios.

15.
PeerJ ; 4: e1754, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966675

RESUMO

We describe the partially preserved femur of a large-bodied theropod dinosaur from the Cenomanian "Kem Kem Compound Assemblage" (KKCA) of Morocco. The fossil is housed in the Museo Geologico e Paleontologico "Gaetano Giorgio Gemmellaro" in Palermo (Italy). The specimen is compared with the theropod fossil record from the KKCA and coeval assemblages from North Africa. The combination of a distally reclined head, a not prominent trochanteric shelf, distally placed lesser trochanter of stout, alariform shape, a stocky shaft with the fourth trochanter placed proximally, and rugose muscular insertion areas in the specimen distinguishes it from Carcharodontosaurus, Deltadromeus and Spinosaurus and supports referral to an abelisaurid. The estimated body size for the individual from which this femur was derived is comparable to Carnotaurus and Ekrixinatosaurus (up to 9 meters in length and 2 tons in body mass). This find confirms that abelisaurids had reached their largest body size in the "middle Cretaceous," and that large abelisaurids coexisted with other giant theropods in Africa. We review the taxonomic status of the theropods from the Cenomanian of North Africa, and provisionally restrict the Linnean binomina Carcharodontosaurus iguidensis and Spinosaurus aegyptiacus to the type specimens. Based on comparisons among the theropod records from the Aptian-Cenomanian of South America and Africa, a partial explanation for the so-called "Stromer's riddle" (namely, the coexistence of many large predatory dinosaurs in the "middle Cretaceous" record from North Africa) is offered in term of taphonomic artifacts among lineage records that were ecologically and environmentally non-overlapping. Although morphofunctional and stratigraphic evidence supports an ecological segregation between spinosaurids and the other lineages, the co-occurrence of abelisaurids and carcharodontosaurids, two groups showing several craniodental convergences that suggest direct resource competition, remains to be explained.

16.
PeerJ ; 3: e1032, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157616

RESUMO

The exceptionally well-preserved Romanian dinosaur Balaur bondoc is the most complete theropod known to date from the Upper Cretaceous of Europe. Previous studies of this remarkable taxon have included its phylogenetic interpretation as an aberrant dromaeosaurid with velociraptorine affinities. However, Balaur displays a combination of both apparently plesiomorphic and derived bird-like characters. Here, we analyse those features in a phylogenetic revision and show how they challenge its referral to Dromaeosauridae. Our reanalysis of two distinct phylogenetic datasets focusing on basal paravian taxa supports the reinterpretation of Balaur as an avialan more crownward than Archaeopteryx but outside of Pygostylia, and as a flightless taxon within a paraphyletic assemblage of long-tailed birds. Our placement of Balaur within Avialae is not biased by character weighting. The placement among dromaeosaurids resulted in a suboptimal alternative that cannot be rejected based on the data to hand. Interpreted as a dromaeosaurid, Balaur has been assumed to be hypercarnivorous and predatory, exhibiting a peculiar morphology influenced by island endemism. However, a dromaeosaurid-like ecology is contradicted by several details of Balaur's morphology, including the loss of a third functional manual digit, the non-ginglymoid distal end of metatarsal II, and a non-falciform ungual on the second pedal digit that lacks a prominent flexor tubercle. Conversely, an omnivorous ecology is better supported by Balaur's morphology and is consistent with its phylogenetic placement within Avialae. Our reinterpretation of Balaur implies that a superficially dromaeosaurid-like taxon represents the enlarged, terrestrialised descendant of smaller and probably volant ancestors.

17.
PLoS One ; 10(4): e0123475, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25923211

RESUMO

The rebbachisaurid sauropod Tataouinea hannibalis represents the first articulated dinosaur skeleton from Tunisia and one of the best preserved in northern Africa. The type specimen was collected from the lower Albian, fluvio-estuarine deposits of the Ain el Guettar Formation (southern Tunisia). We present detailed analyses on the sedimentology and facies distribution at the main quarry and a revision of the vertebrate fauna associated with the skeleton. Data provide information on a complex ecosystem dominated by crocodilian and other brackish water taxa. Taphonomic interpretations indicate a multi-event, pre-burial history with a combination of rapid segregation in high sediment supply conditions and partial subaerial exposure of the carcass. After the collection in 2011 of the articulated sacrum and proximalmost caudal vertebrae, all showing a complex pattern of pneumatization, newly discovered material of the type specimen allows a detailed osteological description of Tataouinea. The sacrum, the complete and articulated caudal vertebrae 1-17, both ilia and ischia display asymmetrical pneumatization, with the left side of vertebrae and the left ischium showing a more extensive invasion by pneumatic features than their right counterparts. A pneumatic hiatus is present in caudal centra 7 to 13, whereas caudal centra 14-16 are pneumatised by shallow fossae. Bayesian inference analyses integrating morphological, stratigraphic and paleogeographic data support a flagellicaudatan-rebbachisaurid divergence at about 163 Ma and a South American ancestral range for rebbachisaurids. Results presented here suggest an exclusively South American Limaysaurinae and a more widely distributed Rebbachisaurinae lineage, the latter including the South American taxon Katepensaurus and a clade including African and European taxa, with Tataouinea as sister taxon of Rebbachisaurus. This scenario would indicate that South America was not affected by the end-Jurassic extinction of diplodocoids, and was most likely the centre of the rapid radiation of rebbachisaurids to Africa and Europe between 135 and 130 Ma.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/genética , Fósseis/anatomia & histologia , Animais , Teorema de Bayes , Ecossistema , Paleontologia , Filogenia , Esqueleto/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Tunísia
18.
Science ; 345(6196): 562-6, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082702

RESUMO

Recent discoveries have highlighted the dramatic evolutionary transformation of massive, ground-dwelling theropod dinosaurs into light, volant birds. Here, we apply Bayesian approaches (originally developed for inferring geographic spread and rates of molecular evolution in viruses) in a different context: to infer size changes and rates of anatomical innovation (across up to 1549 skeletal characters) in fossils. These approaches identify two drivers underlying the dinosaur-bird transition. The theropod lineage directly ancestral to birds undergoes sustained miniaturization across 50 million years and at least 12 consecutive branches (internodes) and evolves skeletal adaptations four times faster than other dinosaurs. The distinct, prolonged phase of miniaturization along the bird stem would have facilitated the evolution of many novelties associated with small body size, such as reorientation of body mass, increased aerial ability, and paedomorphic skulls with reduced snouts but enlarged eyes and brains.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Tamanho Corporal , Dinossauros/anatomia & histologia , Animais , Teorema de Bayes
20.
Nat Commun ; 4: 2080, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23836048

RESUMO

Recent interpretations of the postcranial anatomy of sauropod dinosaurs differ about pneumatic features supporting an avian-like ventilatory system; the most conservative workers reject most postcranial pneumatizations as being unambiguous evidence of abdominal air sacs. Here we describe the first articulated dinosaur skeleton from Tunisia and refer it to a new rebbachisaurid sauropod, Tataouinea hannibalis gen. et sp. nov. The Tunisian specimen shows a complex pattern of caudosacral and pelvic pneumatization--including the first report of an ischial pneumatic foramen among Dinosauria--strongly supporting the presence of abdominal air sacs. Character optimization among Rebbachisauridae indicates that in the caudal vertebrae, pneumatization of the neural arches preceded that of the centra; in the pelvis, pneumatization of the bones adjacent to the sacrum preceded that of more distal elements. Tataouinea was more closely related to European nigersaurines than to otherwise Gondwanan rebbachisaurids; this supports an Afro-European route for rebbachisaurid dispersal.


Assuntos
Evolução Biológica , Osso e Ossos/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Distribuição Animal , Animais , Aves/anatomia & histologia , Aves/fisiologia , Osso e Ossos/fisiologia , Dinossauros/classificação , Dinossauros/fisiologia , Paleontologia , Filogenia , Tunísia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA