Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 14(11): 2698-2711, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34815748

RESUMO

Allopatric gene pools can evolve in different directions through adaptive and nonadaptive processes and are therefore a source of intraspecific diversity. The connection of these previously isolated gene pools through human intervention can lead to intraspecific diversity loss, through extirpation of native populations or hybridization. However, the mechanisms leading to these situations are not always explicitly documented and are thus rarely used to manage intraspecific diversity. In particular, genotype-by-environment (GxE) interactions can drive postzygotic reproductive isolation mechanisms that may result in a mosaic of diversity patterns, depending on the local environment. We test this hypothesis using a salmonid species (Salmo trutta) in the Mediterranean (MED) area, where intensive stocking from non-native Atlantic (ATL) origins has led to various outcomes of hybridization with the native MED lineage, going from MED resilience to total extirpation via full hybridization. We investigate patterns of offspring survival at egg stage in natural environments, based on parental genotypes in interaction with river temperature, to detect potential GxE interactions. Our results show a strong influence of maternal GxE interaction on embryonic survival, mediated by maternal effect through egg size, and a weak influence of paternal GxE interaction. In particular, when egg size is large and temperature is cold, the survival rate of offspring originating from MED females is three times higher than that of ATL females' offspring. Because river temperatures show contrast at small scale, this cold adaptation for MED females' offspring constitutes a potent postzygotic mechanism to explain small-scale spatial heterogeneity in diversity observed in MED areas where ATL fish have been stocked. It also indicates that management efforts could be specifically targeted at the environments that actively favor native intraspecific diversity through eco-evolutionary processes such as postzygotic selection.

2.
Ecol Evol ; 7(14): 5201-5211, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28770060

RESUMO

Artificial stocking practices are widely used by resource managers worldwide, in order to sustain fish populations exploited by both recreational and commercial activities, but their benefits are controversial. Former practices involved exotic strains, although current programs rather consider artificial breeding of local fishes (supportive breeding). Understanding the complex genetic effects of these management strategies is an important challenge with economic and conservation implications, especially in the context of population declines. In this study, we focus on the declining Arctic charr (Salvelinus alpinus) population from Lake Geneva (Switzerland and France), which has initially been restocked with allochtonous fishes in the early eighties, followed by supportive breeding. In this context, we conducted a genetic survey to document the evolution of the genetic diversity and structure throughout the last 50 years, before and after the initiation of hatchery supplementation, using contemporary and historical samples. We show that the introduction of exotic fishes was associated with a genetic bottleneck in the 1980-1990s, a break of Hardy-Weinberg Equilibrium (HWE), a reduction in genetic diversity, an increase in genetic structure among spawning sites, and a change in their genetic composition. Together with better environmental conditions, three decades of subsequent supportive breeding using local fishes allowed to re-establish HWE and the initial levels of genetic variation. However, current spawning sites have not fully recovered their original genetic composition and were extensively homogenized across the lake. Our study demonstrates the drastic genetic consequences of different restocking tactics in a comprehensive spatiotemporal framework and suggests that genetic alteration by nonlocal stocking may be partly reversible through supportive breeding. We recommend that conservation-based programs consider local diversity and implement adequate protocols to limit the genetic homogenization of this Arctic charr population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA