Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 118(3): 732-745, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-33751044

RESUMO

The search for new strategies for better understanding cardiovascular (CV) disease is a constant one, spanning multitudinous types of observations and studies. A comprehensive characterization of each disease state and its biomolecular underpinnings relies upon insights gleaned from extensive information collection of various types of data. Researchers and clinicians in CV biomedicine repeatedly face questions regarding which types of data may best answer their questions, how to integrate information from multiple datasets of various types, and how to adapt emerging advances in machine learning and/or artificial intelligence to their needs in data processing. Frequently lauded as a field with great practical and translational potential, the interface between biomedical informatics and CV medicine is challenged with staggeringly massive datasets. Successful application of computational approaches to decode these complex and gigantic amounts of information becomes an essential step toward realizing the desired benefits. In this review, we examine recent efforts to adapt informatics strategies to CV biomedical research: automated information extraction and unification of multifaceted -omics data. We discuss how and why this interdisciplinary space of CV Informatics is particularly relevant to and supportive of current experimental and clinical research. We describe in detail how open data sources and methods can drive discovery while demanding few initial resources, an advantage afforded by widespread availability of cloud computing-driven platforms. Subsequently, we provide examples of how interoperable computational systems facilitate exploration of data from multiple sources, including both consistently formatted structured data and unstructured data. Taken together, these approaches for achieving data harmony enable molecular phenotyping of CV diseases and unification of CV knowledge.


Assuntos
Inteligência Artificial , Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/terapia , Computação em Nuvem , Humanos , Informática , Aprendizado de Máquina
2.
J Vis Exp ; (139)2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30295669

RESUMO

Clinical case reports (CCRs) are a valuable means of sharing observations and insights in medicine. The form of these documents varies, and their content includes descriptions of numerous, novel disease presentations and treatments. Thus far, the text data within CCRs is largely unstructured, requiring significant human and computational effort to render these data useful for in-depth analysis. In this protocol, we describe methods for identifying metadata corresponding to specific biomedical concepts frequently observed within CCRs. We provide a metadata template as a guide for document annotation, recognizing that imposing structure on CCRs may be pursued by combinations of manual and automated effort. The approach presented here is appropriate for organization of concept-related text from a large literature corpus (e.g., thousands of CCRs) but may be easily adapted to facilitate more focused tasks or small sets of reports. The resulting structured text data includes sufficient semantic context to support a variety of subsequent text analysis workflows: meta-analyses to determine how to maximize CCR detail, epidemiological studies of rare diseases, and the development of models of medical language may all be made more realizable and manageable through the use of structured text data.


Assuntos
Metadados , Humanos , Semântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...