Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 292(6): 2485-2494, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028176

RESUMO

MsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX). Here we report a detailed biochemical characterization of the MsrQ protein from Escherichia coli We optimized conditions for the overexpression and membrane solubilization of an MsrQ-GFP fusion and set up a purification scheme allowing the production of pure MsrQ. Combining UV-visible spectroscopy, heme quantification, and site-directed mutagenesis of histidine residues, we demonstrated that MsrQ is able to bind two b-type hemes through the histidine residues conserved between the MsrQ and NOX protein families. In addition, we identify the E. coli flavin reductase Fre, which is related to the dehydrogenase domain of eukaryotic NOX enzymes, as an efficient cytosolic electron donor to the MsrQ heme moieties. Cross-linking experiments as well as surface Plasmon resonance showed that Fre interacts with MsrQ to form a specific complex. Taken together, these data support the identification of the first prokaryotic two-component protein system related to the eukaryotic NOX family and involved in the reduction of periplasmic oxidized proteins.


Assuntos
Escherichia coli/enzimologia , Metionina Sulfóxido Redutases/metabolismo , NADPH Oxidases/metabolismo , Sequência de Aminoácidos , Transporte de Elétrons , Proteínas de Fluorescência Verde/genética , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/genética , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta , Ressonância de Plasmônio de Superfície
2.
ACS Chem Biol ; 11(5): 1438-44, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26963368

RESUMO

PerR is the peroxide resistance regulator found in several pathogenic bacteria and governs their resistance to peroxide stress by inducing enzymes that destroy peroxides. However, it has recently been implicated as a key component of the aerotolerance in several facultative or strict anaerobes, including the highly pathogenic Staphylococcus aureus. By combining (18)O labeling studies to ESI- and MALDI-TOF MS detection and EMSA experiments, we demonstrate that the active form of PerR reacts with dioxygen, which leads ultimately to disruption of the PerR/DNA complex and is thus physiologically meaningful. Moreover, we show that the presence of O2 assists PerR sensing of H2O2, another feature likely to be important for anaerobic organisms. These results allow one to envisage different scenarios for the response of anaerobes to air exposure.


Assuntos
Bacillus subtilis/metabolismo , Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxigênio/metabolismo , Proteínas Repressoras/metabolismo , DNA Bacteriano/metabolismo , Oxirredução , Staphylococcus aureus/metabolismo
3.
ACS Chem Biol ; 10(3): 682-6, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25486128

RESUMO

Fur family proteins, ubiquitous in prokaryotes, play a pivotal role in microbial survival and virulence in most pathogens. Metalloregulators, such as Fur and PerR, regulate the transcription of genes connected to iron homeostasis and response to oxidative stress, respectively. In Bacillus subtilis, Fur and PerR bind with high affinity to DNA sequences differing at only two nucleotides. In addition to these differences in the PerR and Fur boxes, we identify in this study a residue located on the DNA binding motif of the Fur protein that is critical to discrimination between the two close DNA sequences. Interestingly, when this residue is introduced into PerR, it lowers the affinity of PerR for its own DNA target but confers to the protein the ability to interact strongly with the Fur DNA binding sequence. The present data show how two closely related proteins have distinct biological properties just by changing a single residue.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Mutação , Proteínas Repressoras/genética , Arginina/metabolismo , Asparagina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transcrição Gênica
5.
Nat Chem Biol ; 5(1): 53-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19079268

RESUMO

In Bacillus subtilis, PerR is a metal-dependent sensor of hydrogen peroxide. PerR is a dimeric zinc protein with a regulatory site that coordinates either Fe(2+) (PerR-Zn-Fe) or Mn(2+) (PerR-Zn-Mn). Though most of the peroxide sensors use cysteines to detect H(2)O(2), it has been shown that reaction of PerR-Zn-Fe with H(2)O(2) leads to the oxidation of one histidine residue. Oxidation of PerR leads to the incorporation of one oxygen atom into His37 or His91. This study presents the crystal structure of the oxidized PerR protein (PerR-Zn-ox), which clearly shows a 2-oxo-histidine residue in position 37. Formation of 2-oxo-histidine is demonstrated and quantified by HPLC-MS/MS. EPR experiments indicate that PerR-Zn-H37ox retains a significant affinity for the regulatory metal, whereas PerR-Zn-H91ox shows a considerably reduced affinity for the metal ion. In spite of these major differences in terms of metal binding affinity, oxidation of His37 and/or His91 in PerR prevents DNA binding.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Histidina/química , Histidina/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Bacillus subtilis/metabolismo , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica/fisiologia , Espectrometria de Massas , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica
6.
Biochemistry ; 46(5): 1329-42, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17260962

RESUMO

Fur is a bacterial regulator using iron as a cofactor to bind to specific DNA sequences. This protein exists in solution as several oligomeric states, of which the dimer is generally assumed to be the biologically relevant one. We describe the equilibria that exist between dimeric Escherichia coli Fur and higher oligomers. The dissociation constant for the dimer-tetramer equilibrium is estimated to be in the millimolar range. Oligomerization is enhanced at low ionic strength and pH. The as-isolated monomeric form of Fur is not in equilibrium with the dimer and contains two disulfide bridges (C92-C95 and C132-C137). Binding of the monomer to DNA is metal-dependent and sequence specific with an apparent affinity 5.5 times lower than that of the dimer. Size exclusion chromatography, EDC cross-linking, and CD spectroscopy show that reconstitution of the dimer from the monomer requires reduction of the disulfide bridges and coordination of Zn2+. Reduction of the disulfide bridges or Zn2+ alone does not promote dimerization. EDC and DMA cross-links reveal that the N-terminal NH2 group of one subunit is in an ionic interaction with acidic residues of the C-terminal tail and close to Lys76 and Lys97 of the other. Furthermore, the yields of cross-link drastically decrease upon binding of metal in the activation site, suggesting that the N-terminus is involved in the conformational change. Conversely, oxidizing reagents, H2O2 or diamide, disrupt the dimeric structure leading to monomer formation. These results establish that coordination of the zinc ion and the redox state of the cysteines are essential for holding E. coli Fur in a dimeric state.


Assuntos
Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Proteínas Repressoras/química , Zinco/química , Dicroísmo Circular , Reagentes de Ligações Cruzadas , Dimerização , Dissulfetos , Oxirredução , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
7.
Mol Microbiol ; 61(5): 1211-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16925555

RESUMO

Bacteria adapt to elevated levels of Reactive Oxygen Species (ROS) by increasing the expression of defence and repair proteins, which is regulated by ROS responsive transcription factors. In Bacillus subtilis the zinc protein PerR, a peroxide sensor that binds DNA in the presence of a regulatory metal Mn2+ or Fe2+, mediates the adaptive response to H2O2. This study presents the first crystal structure of apo-PerR-Zn which shows that all four cysteine residues of the protein are involved in zinc co-ordination. The Zn(Cys)4 site locks the dimerization domain and stabilizes the dimer. Sequence alignment of PerR-like proteins supports that this structural site may constitute a distinctive feature of this class of peroxide stress regulators.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X/métodos , Proteínas Repressoras/química , Fatores de Transcrição/química , Zinco/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Cristalização/métodos , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dimerização , Ácido Ditionitrobenzoico/química , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...