Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38140106

RESUMO

The concept of pain encompasses a complex interplay of sensory and emotional experiences associated with actual or potential tissue damage. Accurately describing and localizing pain, whether acute or chronic, mild or severe, poses a challenge due to its diverse manifestations. Understanding the underlying origins and mechanisms of these pain variations is crucial for effective management and pharmacological interventions. Derived from a wide spectrum of species, including snakes, arthropods, mollusks, and vertebrates, animal venoms have emerged as abundant repositories of potential biomolecules exhibiting analgesic properties across a broad spectrum of pain models. This review focuses on highlighting the most promising venom-derived toxins investigated as potential prototypes for analgesic drugs. The discussion further encompasses research prospects, challenges in advancing analgesics, and the practical application of venom-derived toxins. As the field continues its evolution, tapping into the latent potential of these natural bioactive compounds holds the key to pioneering approaches in pain management and treatment. Therefore, animal toxins present countless possibilities for treating pain caused by different diseases. The development of new analgesic drugs from toxins is one of the directions that therapy must follow, and it seems to be moving forward by recommending the composition of multimodal therapy to combat pain.

2.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511277

RESUMO

Snakebite envenoming represents a major health problem in tropical and subtropical countries. Considering the elevated number of accidents and high morbidity and mortality rates, the World Health Organization reclassified this disease to category A of neglected diseases. In Latin America, Bothrops genus snakes are mainly responsible for snakebites in humans, whose pathophysiology is characterized by local and systemic inflammatory and degradative processes, triggering prothrombotic and hemorrhagic events, which lead to various complications, organ damage, tissue loss, amputations, and death. The activation of the multicellular blood system, hemostatic alterations, and activation of the inflammatory response are all well-documented in Bothrops envenomings. However, the interface between inflammation and coagulation is still a neglected issue in the toxinology field. Thromboinflammatory pathways can play a significant role in some of the major complications of snakebite envenoming, such as stroke, venous thromboembolism, and acute kidney injury. In addition to exacerbating inflammation and cell interactions that trigger vaso-occlusion, ischemia-reperfusion processes, and, eventually, organic damage and necrosis. In this review, we discuss the role of inflammatory pathways in modulating coagulation and inducing platelet and leukocyte activation, as well as the inflammatory production mediators and induction of innate immune responses, among other mechanisms that are altered by Bothrops venoms.


Assuntos
Bothrops , Mordeduras de Serpentes , Humanos , Animais , Mordeduras de Serpentes/complicações , Coagulação Sanguínea , Inflamação/complicações , Transdução de Sinais
3.
Toxins (Basel) ; 15(3)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36977071

RESUMO

Specific and sensitive tools for the diagnosis and monitoring of accidents by venomous animals are urgently needed. Several diagnostic and monitoring assays have been developed; however, they have not yet reached the clinic. This has resulted in late diagnoses, which represents one of the main causes of progression from mild to severe disease. Human blood is a protein-rich biological fluid that is routinely collected in hospital settings for diagnostic purposes, which can translate research progress from the laboratory to the clinic. Although it is a limited view, blood plasma proteins provide information about the clinical picture of envenomation. Proteome disturbances in response to envenomation by venomous animals have been identified, allowing mass spectrometry (MS)-based plasma proteomics to emerge as a tool in a range of clinical diagnostics and disease management that can be applied to cases of venomous animal envenomation. Here, we provide a review of the state of the art on routine laboratory diagnoses of envenomation by snakes, scorpions, bees, and spiders, as well as a review of the diagnostic methods and the challenges encountered. We present the state of the art on clinical proteomics as the standardization of procedures to be performed within and between research laboratories, favoring a more excellent peptide coverage of candidate proteins for biomarkers. Therefore, the selection of a sample type and method of preparation should be very specific and based on the discovery of biomarkers in specific approaches. However, the sample collection protocol (e.g., collection tube type) and the processing procedure of the sample (e.g., clotting temperature, time allowed for clotting, and anticoagulant used) are equally important to eliminate any bias.


Assuntos
Proteômica , Serpentes , Animais , Humanos , Proteômica/métodos , Proteínas Sanguíneas/análise , Biomarcadores , Proteoma , Plasma/química
4.
J Proteomics ; 269: 104742, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36174952

RESUMO

Snakes of the genus Bothrops are responsible the most snakebites in the Brazil, causing a diverse and complex pathophysiological condition. Bothrops erythromelas is the main specie of medical relevance found in the Caatinga from the Brazilian Northeast region. The pathophysiological effects involving B. erythromelas snakebite as well as the organism reaction in response to this envenomation are not so explored. Thus, edema was induced in mice paws using 2.5 µg or 5.0 µg of B. erythromelas venom, and the percentage of edema was measured. Plasma was collected 30  minutes after the envenomation-induced in mice and analyzed by mass spectrometry. It was identified a total of 112 common plasma proteins differentially abundant among experimental groups, which are involved with the complement system and coagulation cascades, oxidative stress, neutrophil degranulation, platelets degranulation and inflammatory response. Apolipoprotein A1 (Apoa), serum amyloid protein A-4 (Saa4), adiponectin (Adipoq) showed up-regulated in mice plasma after injection of venom, while fibulin (Fbln1), factor XII (F12) and vitamin K-dependent protein Z (Proz) showed down-regulated. The results indicate a protein pattern of thrombo-inflammation to the B. erythromelas snakebite, evidencing potential biomarkers for monitoring this snakebite, new therapeutic targets and its correlations with the degree of envenomation once showed modulations in the abundance among the different groups according to the amount of venom injected into the mice.


Assuntos
Bothrops , Venenos de Crotalídeos , Mordeduras de Serpentes , Adiponectina , Animais , Apolipoproteína A-I , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Edema , Fator XII , Camundongos , Plasma/química , Proteoma/análise , Proteína Amiloide A Sérica , Venenos de Serpentes , Vitamina K
5.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136550

RESUMO

The clinical manifestations of Bothrops atrox envenoming involve local and systemic changes, among which edema requires substantial attention due to its ability to progress to compartmental syndromes and sometimes cause tissue loss and amputations. However, the impact of edema on the poisoned body's system has not been explored. Thus, the present study aimed to explore the systemic pathological and inflammatory events that are altered by intraplantar injection of B. atrox venom in a mouse model through hematologic, lipidic, and shotgun proteomics analysis. Plasma samples collected showed a greater abundance of proteins related to complement, coagulation, lipid system, platelet and neutrophil degranulation, and pathways related to cell death and ischemic tolerance. Interestingly, some proteins, in particular, Prdx2 (peroxiredoxin 2), Hba (hemoglobin subunit alpha), and F9 (Factor IX), increased according to the amount of venom injected. Our findings support that B. atrox venom activates multiple blood systems that are involved in thromboinflammation, an observation that may have implications for the pathophysiological progression of envenomations. Furthermore, we report for the first time a potential role of Prdx2, Hba, and F9 as potential markers of the severity of edema/inflammation in mice caused by B. atrox.


Assuntos
Bothrops , Venenos de Crotalídeos , Trombose , Animais , Venenos de Crotalídeos/toxicidade , Edema/induzido quimicamente , Fator IX , Subunidades de Hemoglobina , Inflamação , Lipídeos , Camundongos , Peroxirredoxinas , Plasma , Proteoma , Tromboinflamação
6.
J Proteomics ; 253: 104464, 2022 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-34954398

RESUMO

Bothrops spp. is responsible for about 70% of snakebites in Brazil, causing a diverse and complex pathophysiological condition. Bothrops leucurus is the main species of medical relevance found in the Atlantic coast in the Brazilian Northeast region. The pathophysiological effects involved B. leucurus snakebite as well as the organism's reaction in response to this envenoming, it has not been explored yet. Thus, edema was induced in mice paw using 1.2, 2.5, and 5.0 µg of B. leucurus venom, the percentage of edema was measured 30 min after injection and the blood plasma was collected and analyzed by shotgun proteomic strategy. We identified 80 common plasma proteins with differential abundance among the experimental groups and we can understand the early aspects of this snake envenomation, regardless of the suggestive severity of an ophidian accident. The results showed B. leucurus venom triggers a thromboinflammation scenario where family's proteins of the Serpins, Apolipoproteins, Complement factors and Component subunits, Cathepsins, Kinases, Oxidoreductases, Proteases inhibitors, Proteases, Collagens, Growth factors are related to inflammation, complement and coagulation systems, modulators platelets and neutrophils, lipid and retinoid metabolism, oxidative stress and tissue repair. Our findings set precedents for future studies in the area of early diagnosis and/or treatment of snakebites. SIGNIFICANCE: The physiopathological effects that the snake venoms can cause have been investigated through classical and reductionist tools, which allowed, so far, the identification of action mechanisms of individual components associated with specific tissue damage. The currently incomplete limitations of this knowledge must be expanded through new approaches, such as proteomics, which may represent a big leap in understanding the venom-modulated pathological process. The exploration of the complete protein set that suffer modifications by the simultaneous action of multiple toxins, provides a map of the establishment of physiopathological phenotypes, which favors the identification of multiple toxin targets, that may or may not act in synergy, as well as favoring the discovery of biomarkers and therapeutic targets for manifestations that are not neutralized by the antivenom.


Assuntos
Bothrops , Venenos de Crotalídeos , Mordeduras de Serpentes , Trombose , Animais , Antivenenos/metabolismo , Bothrops/metabolismo , Venenos de Crotalídeos/toxicidade , Inflamação , Camundongos , Plasma/metabolismo , Proteoma , Proteômica , Venenos de Serpentes/toxicidade
7.
Toxicon ; 201: 105-114, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34425141

RESUMO

Snake venoms are substances mostly composed by proteins and peptides with high biological activity. Local and systemic effects culminate in clinical manifestations induced by these substances. Pain is the most uncomfortable condition, but it has not been well investigated. This review discusses Bothrops snakebite-induced nociception, highlighting molecules involved in the mediation of this process and perspectives in treatment of pain induced by Bothrops snake venoms (B. alternatus, B. asper, B. atrox, B. insularis, B. jararaca, B. pirajai, B. jararacussu, B. lanceolatus, B. leucurus, B. mattogrossensis, B. moojeni). We highlight, the understanding of the nociceptive signaling, especially in snakebite, enables more efficient treatment approaches. Finally, future perspectives for pain treatment concerning snakebite patients are discussed.


Assuntos
Bothrops , Venenos de Crotalídeos , Mordeduras de Serpentes , Animais , Venenos de Crotalídeos/toxicidade , Humanos , Nociceptividade , Dor/induzido quimicamente , Dor/tratamento farmacológico , Mordeduras de Serpentes/tratamento farmacológico , Venenos de Serpentes/toxicidade
8.
J Toxicol Environ Health B Crit Rev ; 24(1): 30-50, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33308037

RESUMO

One of the factors responsible for lack of reproducible findings may be attributed to the raw material used. To date, there are no apparent studies examining reproducibility using venoms for the development of new toxin-based drugs with respect to regulatory agencies' policies. For this reason, protocols were implemented to produce animal toxins with quality, traceability, and strict compliance with Good Manufacturing Practices. This required validation of the production chain from the arrival of the animal to the vivarium, followed by handling, housing, as well as compliance with respect to extraction, freeze-drying, and, finally, storage protocols, aimed at generating compounds to serve as candidate molecules applicable in clinical trials. Currently, to produce quality snake venoms to support reproductive studies, the Center for the Study of Venoms and Venomous Animals (CEVAP) from São Paulo State University (UNESP), São Paulo, Brazil has 449 microchipped snakes through rigid and standardized operating procedures for safety, health, and welfare of animals. Snakes were frequently subjected to vet clinical examination, anthelmintic, and antiparasitic treatment. Venom milk used to destroy prey was collected from each animal in individual plastic microtubes to avoid contamination and for traceability. In addition, venoms were submitted to microbiological, and biochemical toxicological analyses. It is noteworthy that investigators are responsible for caring, maintaining, and manipulating snakes and ensuring their health in captivity. This review aimed to contribute to the pharmaceutical industry the experimental experience and entire snake venom production chain required to generate quality products for therapeutic human consumption.


Assuntos
Produtos Biológicos/uso terapêutico , Indústria Farmacêutica/normas , Venenos de Serpentes/uso terapêutico , Animais , Produtos Biológicos/normas , Brasil , Desenvolvimento de Medicamentos/legislação & jurisprudência , Desenvolvimento de Medicamentos/normas , Humanos , Reprodutibilidade dos Testes , Serpentes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...