Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 49(7): 4731-4742, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35441716

RESUMO

BACKGROUND: Ultra-high dose-rate (UHDR) irradiations (>40 Gy/s) have recently garnered interest in radiotherapy (RT) as they can trigger the so-called "FLASH" effect, namely a higher tolerance of normal tissues in comparison with conventional dose rates when a sufficiently high dose is delivered to the tissue. To transfer this to clinical RT treatments, adapted methods and practical tools for online dosimetry need to be developed. Ionization chambers remain the gold standards in RT but the charge recombination effects may be very significant at such high dose rates, limiting the use of some of these dosimeters. The reduction of the sensitive volume size can be an interesting characteristic to reduce such effects. PURPOSE: In that context, we have investigated the charge collection behavior of the recent IBA Razor™ Nano Chamber (RNC) in UHDR pulses to evaluate its potential interest for FLASH RT. METHODS: In order to quantify the RNC ion collection efficiency (ICE), simultaneous dose measurements were performed under UHDR electron beams with dose-rate-independent Gafchromic™ EBT3 films that were used as the dose reference. A dose-per-pulse range from 0.01 to 30 Gy was investigated, varying the source-to-surface distance, the pulse duration (1 and 3 µs investigated) and the LINAC gun grid tension as irradiation parameters. In addition, the RNC measurements were corrected from the inherent beam shot-to-shot variations using an independent current transformer. An empirical logistic model was used to fit the RNC collection efficiency measurements and the results were compared with the Advanced Markus plane parallel ion chamber. RESULTS: The RNC ICE was found to decrease as the dose-per-pulse increases, starting from doses above 0.2 Gy/pulse and down to 40% of efficiency at 30 Gy/pulse. The RNC resulted in a higher ICE for a given dose-per-pulse in comparison with the Markus chamber, with a measured efficiency found higher than 85 and 55% for 1 and 10 Gy/pulse, respectively, whereas the Markus ICE was of 60 and 25% for the same doses. However, the RNC shows a higher sensitivity to the pulse duration than the Advanced Markus chamber, with a lower efficiency found at 1 µs than at 3 µs, suggesting that this chamber could be more sensitive to the dose rate within the pulse. CONCLUSIONS: The results confirmed that the small sensitive volume of the RNC ensures higher ICE compared with larger chambers. The RNC was thus found to be a promising online dosimetry tool for FLASH RT and we proposed an ion recombination model to correct its response up to extreme dose-per-pulses of 30 Gy.


Assuntos
Elétrons , Radiometria , Aceleradores de Partículas , Radiometria/métodos
2.
Cancers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638424

RESUMO

The development of innovative approaches that would reduce the sensitivity of healthy tissues to irradiation while maintaining the efficacy of the treatment on the tumor is of crucial importance for the progress of the efficacy of radiotherapy. Recent methodological developments and innovations, such as scanned beams, ultra-high dose rates, and very high-energy electrons, which may be simultaneously available on new accelerators, would allow for possible radiobiological advantages of very short pulses of ultra-high dose rate (FLASH) therapy for radiation therapy to be considered. In particular, very high-energy electron (VHEE) radiotherapy, in the energy range of 100 to 250 MeV, first proposed in the 2000s, would be particularly interesting both from a ballistic and biological point of view for the establishment of this new type of irradiation technique. In this review, we examine and summarize the current knowledge on VHEE radiotherapy and provide a synthesis of the studies that have been published on various experimental and simulation works. We will also consider the potential for VHEE therapy to be translated into clinical contexts.

3.
Cancers (Basel) ; 14(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008189

RESUMO

Proton MiniBeam Radiation Therapy (pMBRT) is a novel strategy that combines the benefits of minibeam radiation therapy with the more precise ballistics of protons to further optimize the dose distribution and reduce radiation side effects. The aim of this study is to investigate possible strategies to couple pMBRT with dipole magnetic fields to generate a converging minibeam pattern and increase the center-to-center distance between minibeams. Magnetic field optimization was performed so as to obtain the same transverse dose profile at the Bragg peak position as in a reference configuration with no magnetic field. Monte Carlo simulations reproducing realistic pencil beam scanning settings were used to compute the dose in a water phantom. We analyzed different minibeam generation techniques, such as the use of a static multislit collimator or a dynamic aperture, and different magnetic field positions, i.e., before or within the water phantom. The best results were obtained using a dynamic aperture coupled with a magnetic field within the water phantom. For a center-to-center distance increase from 4 mm to 6 mm, we obtained an increase of peak-to-valley dose ratio and decrease of valley dose above 50%. The results indicate that magnetic fields can be effectively used to improve the spatial modulation at shallow depth for enhanced healthy tissue sparing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...