Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chimia (Aarau) ; 78(4): 192-195, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38676607

RESUMO

Organic mixed ionic and electronic conductors (OMIECs) are an emerging class of materials that have been applied for a wide range of electrochemical applications. Due to the complexity inherent to the ionic-electroniccoupling, understanding the underlying mechanisms involved in the OMIEC operation is an exciting and very lively research field. In this work, we highlight the use of time-resolved Vis-NIR spectroelectrochemistry tocharacterize these materials. We discuss an example, where we show that by combining this tool with spectraldecomposition, we are able to understand fundamental aspects of the doping in an OMIEC film. The methodswe present here can be generalized and used to characterize any electrochromic material.

2.
Adv Mater ; 35(35): e2300308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37086157

RESUMO

Conjugated polymers are increasingly used as organic mixed ionic-electronic conductors in electrochemical applications for neuromorphic computing, bioelectronics, and energy harvesting. The design of efficient electrochemical devices relies on large modulations of the polymer conductivity, fast doping/dedoping kinetics, and high ionic uptake. In this work, structure-property relations are established and control of these parameters by the co-existence of order and disorder in the phase morphology is demonstrated. Using in situ time-resolved spectroelectrochemistry, resonant Raman, and terahertz (THz) conductivity measurements, the electrochemical doping in the different morphological domains of poly(3-hexylthiophene) (P3HT) is investigated. The main finding is that bipolarons are found preferentially in disordered polymer regions, where they are formed faster and are thermodynamically more favored. On the other hand, polarons show a preference for ordered domains, leading to drastically different bipolaron/polaron ratios and doping/dedoping dynamics in the distinct regions. A significant enhancement of the electronic conductivity is evident when bipolarons start forming in the disordered regions, while the presence of bipolarons in the ordered regions is detrimental for transport. This study provides significant advances in the understanding of the impact of morphology on the electrochemical doping of conjugated polymers and the induced increase in conductivity.

3.
Mater Horiz ; 9(2): 841, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35005761

RESUMO

Correction for 'Bipolarons rule the short-range terahertz conductivity in electrochemically doped P3HT' by Demetra Tsokkou et al., Mater. Horiz., 2022, DOI: 10.1039/d1mh01343b.

4.
Mater Horiz ; 9(1): 482-491, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904620

RESUMO

Doping of organic semiconductor films enhances their conductivity for applications in organic electronics, thermoelectrics and bioelectronics. However, much remains to be learnt about the properties of the conductive charges in order to optimize the design of the materials. Electrochemical doping is not only the fundamental mechanism in organic electrochemical transistors (OECTs), used in biomedical sensors, but it also represents an ideal playground for fundamental studies. Benefits of investigating doping mechanisms via electrochemistry include controllable doping levels, reversibility and high achievable carrier densities. We introduced here a new technique, applying in situ terahertz (THz) spectroscopy directly to an electrochemically doped polymer in combination with spectro-electrochemistry and chronoamperometry. We evaluate the intrinsic short-range transport properties of the polymer (without the effects of long-range disorder, grain boundaries and contacts), while precisely tuning the doping level via the applied oxidation voltage. Analysis of the complex THz conductivity reveals both the mobility and density of the charges. We find that polarons and bipolarons need to co-exist in an optimal ratio to reach high THz conductivity (∼300 S cm-1) and mobility (∼7 cm2 V-1 s-1) of P3HT in aqueous KPF6 electrolyte. In this regime, charge mobility increases and a high fraction of injected charges (up to 25%) participates in the transport via mixed-valence hopping. We also show significantly higher conductivity in electrochemically doped P3HT with respect to co-processed molecularly doped films at a similar doping level, which suffer from low mobility. Efficient molecular doping should therefore aim for reduced disorder, high doping levels and backbones that favour bipolaron formation.


Assuntos
Eletrônica , Semicondutores , Condutividade Elétrica , Eletroquímica/métodos , Eletrodos
5.
Opt Lett ; 45(21): 6082-6085, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137074

RESUMO

We demonstrate that time-domain ptychography, when applied to a set of broadband vibrational sum frequency spectra, reconstructs amplitude and phase of the vibrational free induction decay from an interfacial sample with a resolution that is independent of up-converting pulse bandwidth and spectrometer resolution. These important improvements require no modifications to most standard homodyne setups, and the method is applicable to other coherent homodyne spectroscopies such as coherent anti-Stokes Raman spectroscopy and transient grating spectroscopy.

6.
ACS Appl Mater Interfaces ; 11(47): 43799-43810, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31659897

RESUMO

Membrane biosensors that can rapidly sense pathogen interaction and disrupting agents are needed to identify and screen new drugs to combat antibiotic resistance. Bioelectronic devices have the capability to read out both ionic and electrical signals, but their compatibility with biological membranes is somewhat limited. Supported lipid bilayers (SLBs) have served as useful biomimetics for a myriad of research topics involving biological membranes. However, SLBs are traditionally made on inert, rigid, inorganic surfaces. Here, we demonstrate a versatile and facile method for generating SLBs on a conducting polymer device using a solvent-assisted lipid bilayer (SALB) technique. We use this bioelectronic device to form both mammalian and bacterial membrane mimetics to sense the membrane interactions with a bacterial toxin (α-hemolysin) and an antibiotic compound (polymyxin B), respectively. Our results show that we can form high quality bilayers of both types and sense these particular interactions with them, discriminating between pore formation, in the case of α-hemolysin, and disruption of the bilayer, in the case of polymyxin B. The SALB formation method is compatible with many membrane compositions that will not form via common vesicle fusion methods and works well in microfluidic devices. This, combined with the massive parallelization possible for the fabrication of electronic devices, can lead to miniaturized multiplexed devices for rapid data acquisition necessary to identify antibiotic targets that specifically disrupt bacterial, but not mammalian membranes, or identify bacterial toxins that strongly interact with mammalian membranes.


Assuntos
Biomimética/métodos , Técnicas Biossensoriais/métodos , Bicamadas Lipídicas/química , Biomimética/instrumentação , Técnicas Biossensoriais/instrumentação , Membrana Celular/química , Proteínas Hemolisinas/análise , Polímeros/química , Polimixina B/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...