Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(9): e2300911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38629315

RESUMO

SCOPE: Arginine kinase (AK) is an important enzyme for energy metabolism of invertebrate cells by participating in the maintenance of constant levels of ATP. However, AK is also recognized as a major allergen in insects and crustaceans capable of cross-reactivity with sera of patients sensitized to orthologous proteins. In the perspective of introducing insects or their derivatives in the human diet in Western world, it is of primary importance to evaluate possible risks for allergic consumers. METHODS AND RESULTS: This work reports the identification and characterization of AK from Hermetia illucens commonly known as the black soldier fly, a promising insect for human consumption. To evaluate allergenicity of AK from H. illucens, putative linear and conformational epitopes are identified by bioinformatics analyses, and Dot-Blot assays are carried out by using sera of patients allergic to shrimp or mites to validate the cross-reactivity. Gastrointestinal digestion reduces significantly the linear epitopes resulting in lower allergenicity, while the secondary structure is altered at increasing temperatures supporting the possible loss or reduction of conformational epitopes. CONCLUSION: The results indicate that the possible allergenicity of AK should be taken in consideration when dealing with novel foods containing H. illucens or its derivatives.


Assuntos
Alérgenos , Arginina Quinase , Reações Cruzadas , Hipersensibilidade Alimentar , Arginina Quinase/imunologia , Arginina Quinase/metabolismo , Arginina Quinase/genética , Animais , Alérgenos/imunologia , Humanos , Hipersensibilidade Alimentar/imunologia , Insetos Comestíveis/imunologia , Proteínas de Insetos/imunologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Epitopos/imunologia , Sequência de Aminoácidos , Dípteros/imunologia , Simuliidae/imunologia
2.
Eur J Pharm Sci ; 191: 106609, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37838239

RESUMO

One of the strategies proposed for the neutralization of SARS-CoV-2 has been to synthetize small proteins able to act as a decoy towards the virus spike protein, preventing it from entering the host cells. In this work, the incorporation of one of these proteins, LCB1, within a spray-dried formulation for inhalation was investigated. A design of experiments approach was applied to investigate the optimal condition for the manufacturing of an inhalable powder. The lead formulation, containing 6% w/w of LCB1 as well as trehalose and L-leucine as excipients, preserved the physical stability of the protein and its ability to neutralize the virus. In addition, the powder had a fine particle fraction of 58.6% and a very high extra-fine particle fraction (31.3%) which could allow a peripheral deposition in the lung. The in vivo administration of the LCB1 inhalation powder showed no significant difference in the pharmacokinetic from the liquid formulation, indicating the rapid dissolution of the microparticles and the protein capability to translocate into the plasma. Moreover, LCB1 in plasma samples still maintained the ability to neutralize the virus. In conclusion, the optimized spray drying conditions allowed to obtain an inhalation powder able to preserve the protein biological activity, rendering it suitable for a systemic prevention of the viral infection via pulmonary administration.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Pós , SARS-CoV-2 , Tamanho da Partícula , Aerossóis e Gotículas Respiratórios , Administração por Inalação , Peptídeos/metabolismo , Pulmão/metabolismo , Inaladores de Pó Seco
3.
Biomolecules ; 13(8)2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37627284

RESUMO

In humans, the phosphorylated pathway (PP) converts the glycolytic intermediate D-3-phosphoglycerate (3-PG) into L-serine through the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase (PSAT) and phosphoserine phosphatase. From the pathogenic point of view, the PP in the brain is particularly relevant, as genetic defects of any of the three enzymes are associated with a group of neurometabolic disorders known as serine deficiency disorders (SDDs). We recombinantly expressed and characterized eight variants of PSAT associated with SDDs and two non-SDD associated variants. We show that the pathogenetic mechanisms in SDDs are extremely diverse, including low affinity of the cofactor pyridoxal 5'-phosphate and thermal instability for S179L and G79W PSAT, loss of activity of the holo form for R342W PSAT, aggregation for D100A PSAT, increased Km for one of the substrates with invariant kcats for S43R PSAT, and a combination of increased Km and decreased kcat for C245R PSAT. Finally, we show that the flux through the in vitro reconstructed PP at physiological concentrations of substrates and enzymes is extremely sensitive to alterations of the functional properties of PSAT variants, confirming PSAT dysfunctions as a cause of SSDs.


Assuntos
Encéfalo , Transaminases , Humanos , Transaminases/genética , Fosfato de Piridoxal , Serina/genética
4.
iScience ; 26(6): 106940, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275517

RESUMO

Humoral immunity is sensitive to evasion by SARS-CoV-2 mutants, but CD8 T cells seem to be more resistant to mutational inactivation. By a systematic analysis of 30 spike variant peptides containing the most relevant VOC and VOI mutations that have accumulated overtime, we show that in vaccinated and convalescent subjects, mutated epitopes can have not only a neutral or inhibitory effect on CD8 T cell recognition but can also enhance or generate de novo CD8 T cell responses. The emergence of these mutated T cell function enhancing epitopes likely reflects an epiphenomenon of SARS-CoV-2 evolution driven by antibody evasion and increased virus transmissibility. In a subset of individuals with weak and narrowly focused CD8 T cell responses selection of these heteroclitic-like epitopes may bear clinical relevance by improving antiviral protection. The functional enhancing effect of these peptides is also worth of consideration for the future development of new generation, more potent COVID-19 vaccines.

5.
Front Microbiol ; 14: 1171770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234529

RESUMO

Bovine herpesvirus 4 (BoHV-4) is a Gammaherpesvirus belonging to the Rhadinovirus genus. The bovine is BoHV-4's natural host, and the African buffalo is BoHV-4's natural reservoir. In any case, BoHV-4 infection is not associated with a specific disease. Genome structure and genes are well-conserved in Gammaherpesvirus, and the orf 45 gene and its product, ORF45, are one of those. BoHV-4 ORF45 has been suggested to be a tegument protein; however, its structure and function have not yet been experimentally characterized. The present study shows that BoHV-4 ORF45, despite its poor homology with other characterized Rhadinovirus ORF45s, is structurally related to Kaposi's sarcoma-associated herpesvirus (KSHV), is a phosphoprotein, and localizes in the host cell nuclei. Through the generation of an ORF45-null mutant BoHV-4 and its pararevertant, it was possible to demonstrate that ORF45 is essential for BoHV-4 lytic replication and is associated with the viral particles, as for the other characterized Rhadinovirus ORF45s. Finally, the impact of BoHV-4 ORF45 on cellular transcriptome was investigated, an aspect poorly explored or not at all for other Gammaherpesvirus. Many cellular transcriptional pathways were found to be altered, mainly those involving p90 ribosomal S6 kinase (RSK) and signal-regulated kinase (ERK) complex (RSK/ERK). It was concluded that BoHV-4 ORF45 has similar characteristics to those of KSHV ORF45, and its unique and incisive impact on the cell transcriptome paves the way for further investigations.

6.
Proc Natl Acad Sci U S A ; 120(16): e2218329120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37043529

RESUMO

Coevolution at the gene level, as reflected by correlated events of gene loss or gain, can be revealed by phylogenetic profile analysis. The optimal method and metric for comparing phylogenetic profiles, especially in eukaryotic genomes, are not yet established. Here, we describe a procedure suitable for large-scale analysis, which can reveal coevolution based on the assessment of the statistical significance of correlated presence/absence transitions between gene pairs. This metric can identify coevolution in profiles with low overall similarities and is not affected by similarities lacking coevolutionary information. We applied the procedure to a large collection of 60,912 orthologous gene groups (orthogroups) in 1,264 eukaryotic genomes extracted from OrthoDB. We found significant cotransition scores for 7,825 orthogroups associated in 2,401 coevolving modules linking known and unknown genes in protein complexes and biological pathways. To demonstrate the ability of the method to predict hidden gene associations, we validated through experiments the involvement of vertebrate malate synthase-like genes in the conversion of (S)-ureidoglycolate into glyoxylate and urea, the last step of purine catabolism. This identification explains the presence of glyoxylate cycle genes in metazoa and suggests an anaplerotic role of purine degradation in early eukaryotes.


Assuntos
Eucariotos , Evolução Molecular , Eucariotos/genética , Filogenia , Células Eucarióticas
7.
Appl Microbiol Biotechnol ; 106(21): 7113-7128, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36194262

RESUMO

DinJ-YafQ is a bacterial type II TA system formed by the toxin RNase YafQ and the antitoxin protein DinJ. The activity of YafQ and DinJ has been rigorously studied in Escherichia coli, but little has been reported about orthologous systems identified in different microorganisms. In this work, we report an in vitro and in vivo functional characterization of YafQ and DinJ identified in two different strains of Lacticaseibacillus paracasei and isolated as recombinant proteins. While DinJ is identical in both strains, the two YafQ orthologs differ only for the D72G substitution in the catalytic site. Both YafQ orthologs digest ribosomal RNA, albeit with different catalytic efficiencies, and their RNase activity is neutralized by DinJ. We further show that DinJ alone or in complex with YafQ can bind cooperatively to a 28-nt inverted repeat overlapping the -35 element of the TA operon promoter. Atomic force microscopy imaging of DinJ-YafQ in complex with DNA harboring the cognate site reveals the formation of different oligomeric states that prevent the binding of RNA polymerase to the promoter. A single amino acid substitution (R13A) within the RHH DNA-binding motif of DinJ is sufficient to abolish DinJ and DinJ-YafQ DNA binding in vitro. In vivo experiments confirm the negative regulation of the TA promoter by DinJ and DinJ-YafQ and unveil an unexpected high expression-related toxicity of the gfp reporter gene. A model for the binding of two YafQ-(DinJ)2-YafQ tetramers to the promoter inverted repeat showing the absence of protein-protein steric clash is also presented. KEY POINTS: • The RNase activity of L. paracasei YafQ toxin is neutralized by DinJ antitoxin. • DinJ and DinJ-YafQ bind to an inverted repeat to repress their own promoter. • The R13A mutation of DinJ abolishes DNA binding of both DinJ and DinJ-YafQ.


Assuntos
Antitoxinas , Proteínas de Bactérias , Toxinas Bacterianas , Lacticaseibacillus paracasei , Antitoxinas/metabolismo , Toxinas Bacterianas/genética , Proteínas Recombinantes/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , RNA Ribossômico , Proteínas de Bactérias/genética
8.
Front Immunol ; 13: 958123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032169

RESUMO

Polycationic resurfaced proteins hold great promise as cell-penetrating bioreagents but their use as carriers for the intracellular delivery of peptide immuno-epitopes has not thus far been explored. Here, we report on the construction and functional characterization of a positively supercharged derivative of Pyrococcus furiosus thioredoxin (PfTrx), a thermally hyperstable protein we have previously validated as a peptide epitope display and immunogenicity enhancing scaffold. Genetic conversion of 13 selected amino acids to lysine residues conferred to PfTrx a net charge of +21 (starting from the -1 charge of the wild-type protein), along with the ability to bind nucleic acids. In its unfused form, +21 PfTrx was readily internalized by HeLa cells and displayed a predominantly cytosolic localization. A different intracellular distribution was observed for a +21 PfTrx-eGFP fusion protein, which although still capable of cell penetration was predominantly localized within endosomes. A mixed cytosolic/endosomal partitioning was observed for a +21 PfTrx derivative harboring three tandemly repeated copies of a previously validated HPV16-L2 (aa 20-38) B-cell epitope grafted to the display site of thioredoxin. Compared to its wild-type counterpart, the positively supercharged antigen induced a faster immune response and displayed an overall superior immunogenicity, including a substantial degree of self-adjuvancy. Altogether, the present data point to +21 PfTrx as a promising novel carrier for intracellular antigen delivery and the construction of potentiated recombinant subunit vaccines.


Assuntos
Archaea , Peptídeos Penetradores de Células , Tiorredoxinas , Antígenos , Peptídeos Penetradores de Células/imunologia , Epitopos de Linfócito B , Células HeLa , Humanos , Peptídeos , Tiorredoxinas/imunologia , Vacinas de Subunidades Antigênicas
9.
J Control Release ; 340: 209-220, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34740725

RESUMO

Vaccines not requiring cold-chain storage/distribution and suitable for needle-free delivery are urgently needed. Pulmonary administration is one of the most promising non-parenteral routes for vaccine delivery. Through a multi-component excipient and spray-drying approach, we engineered highly respirable dry-powder vaccine particles containing a three-fold repeated peptide epitope derived from human papillomavirus (HPV16) minor capsid protein L2 displayed on Pyrococcus furious thioredoxin as antigen. A key feature of our engineering approach was the use of the amphiphilic endotoxin derivative glucopyranosyl lipid A (GLA) as both a coating agent enhancing particle de-aggregation and respirability as well as a built-in immune-adjuvant. Following an extensive characterization of the in vitro aerodynamic performance, lung deposition was verified in vivo by intratracheal administration in mice of a vaccine powder containing a fluorescently labeled derivative of the antigen. This was followed by a short-term immunization study that highlighted the ability of the GLA-adjuvanted vaccine powder to induce an anti-L2 systemic immune response comparable to (or even better than) that of the subcutaneously administered liquid-form vaccine. Despite the very short-term immunization conditions employed for this preliminary vaccination experiment, the intratracheally administered dry-powder, but not the subcutaneously injected liquid-state, vaccine induced consistent HPV neutralizing responses. Overall, the present data provide proof-of-concept validation of a new formulation design to produce a dry-powder vaccine that may be easily transferred to other antigens.


Assuntos
Infecções por Papillomavirus , Vacinas , Animais , Excipientes , Lipídeo A , Lubrificantes , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Papillomavirus/prevenção & controle , Pós
10.
Front Immunol ; 12: 730051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566990

RESUMO

There is an urgent need for new generation anti-SARS-Cov-2 vaccines in order to increase the efficacy of immunization and its broadness of protection against viral variants that are continuously arising and spreading. The effect of variants on protective immunity afforded by vaccination has been mostly analyzed with regard to B cell responses. This analysis revealed variable levels of cross-neutralization capacity for presently available SARS-Cov-2 vaccines. Despite the dampened immune responses documented for some SARS-Cov-2 mutations, available vaccines appear to maintain an overall satisfactory protective activity against most variants of concern (VoC). This may be attributed, at least in part, to cell-mediated immunity. Indeed, the widely multi-specific nature of CD8 T cell responses should allow to avoid VoC-mediated viral escape, because mutational inactivation of a given CD8 T cell epitope is expected to be compensated by the persistent responses directed against unchanged co-existing CD8 epitopes. This is particularly relevant because some immunodominant CD8 T cell epitopes are located within highly conserved SARS-Cov-2 regions that cannot mutate without impairing SARS-Cov-2 functionality. Importantly, some of these conserved epitopes are degenerate, meaning that they are able to associate with different HLA class I molecules and to be simultaneously presented to CD8 T cell populations of different HLA restriction. Based on these concepts, vaccination strategies aimed at potentiating the stimulatory effect on SARS-Cov-2-specific CD8 T cells should greatly enhance the efficacy of immunization against SARS-Cov-2 variants. Our review recollects, discusses and puts into a translational perspective all available experimental data supporting these "hot" concepts, with special emphasis on the structural constraints that limit SARS-CoV-2 S-protein evolution and on potentially invariant and degenerate CD8 epitopes that lend themselves as excellent candidates for the rational development of next-generation, CD8 T-cell response-reinforced, COVID-19 vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Epitopos de Linfócito T/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Humanos
11.
Biomolecules ; 11(3)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802146

RESUMO

In cystic fibrosis (CF), the accumulation of viscous lung secretions rich in DNA and actin is a major cause of chronic inflammation and recurrent infections leading to airway obstruction. Mucolytic therapy based on recombinant human DNase1 reduces CF mucus viscosity and promotes airway clearance. However, the marked susceptibility to actin inhibition of this enzyme prompts the research of alternative treatments that could overcome this limitation. Within the human DNase repertoire, DNase1L2 is ideally suited for this purpose because it exhibits metal-dependent endonuclease activity on plasmid DNA in a broad range of pH with acidic optimum and is minimally inhibited by actin. When tested on CF artificial mucus enriched with actin, submicromolar concentrations of DNase1L2 reduces mucus viscosity by 50% in a few seconds. Inspection of superimposed model structures of DNase1 and DNase1L2 highlights differences at the actin-binding interface that justify the increased resistance of DNase1L2 toward actin inhibition. Furthermore, a PEGylated form of the enzyme with preserved enzymatic activity was obtained, showing interesting results in terms of activity. This work represents an effort toward the exploitation of natural DNase variants as promising alternatives to DNase1 for the treatment of CF lung disease.


Assuntos
Actinas/metabolismo , Fibrose Cística/terapia , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/uso terapêutico , Sequência de Aminoácidos , Cálcio/metabolismo , Domínio Catalítico , Sequência Conservada , Cisteína/metabolismo , DNA/isolamento & purificação , Desoxirribonuclease I/química , Humanos , Muco , Oxirredução , Pichia/metabolismo , Plasmídeos/isolamento & purificação , Polietilenoglicóis/química , Ligação Proteica , Proteínas Recombinantes/isolamento & purificação
12.
Sci Rep ; 8(1): 13173, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158542

RESUMO

A correction to this article has been published and is linked from the HTML and the PDF versions of this paper. The error has been fixed in the paper.

13.
Sci Rep ; 7(1): 18000, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269879

RESUMO

Vaccines targeting the human papillomavirus (HPV) minor capsid protein L2 are emerging as chemico-physically robust and broadly protective alternatives to the current HPV (L1-VLP) vaccines. We have previously developed a trivalent L2 vaccine prototype exploiting Pyrococcus furiosus thioredoxin (PfTrx) as a thermostable scaffold for the separate presentation of three distinct HPV L2(20-38) epitopes. With the aim of achieving a highly immunogenic, yet simpler and more GMP-production affordable formulation, we report here on a novel thermostable nanoparticle vaccine relying on genetic fusion of PfTrx-L2 with the heptamerizing coiled-coil polypeptide OVX313. A prototype HPV16 monoepitope version of this nanoparticle vaccine (PfTrx-L2-OVX313; median radius: 8.6 ± 1.0 nm) proved to be approximately 10-fold more immunogenic and with a strikingly enhanced cross-neutralization capacity compared to its monomeric counterpart. Vaccine-induced (cross-)neutralizing responses were further potentiated in a multiepitope derivative displaying eight different L2(20-38) epitopes, which elicited neutralizing antibodies against 10 different HPVs including three viral types not represented in the vaccine. Considering the prospective safety of the PfTrx scaffold and of the OVX313 heptamerization module, PfTrx-OVX313 nanoparticles lend themselves as robust L2-based immunogens with a high translational potential as a 3rd generation HPV vaccine, but also as a novel and extremely versatile peptide-antigen presentation platform.


Assuntos
Anticorpos Neutralizantes/imunologia , Proteínas do Capsídeo/imunologia , Nanopartículas , Papillomaviridae/imunologia , Vacinas contra Papillomavirus/imunologia , Animais , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Feminino , Camundongos , Testes de Neutralização , Tiorredoxinas
14.
Sci Rep ; 7(1): 7628, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794466

RESUMO

An increasing number of esterases is being revealed by (meta) genomic sequencing projects, but few of them are functionally/structurally characterized, especially enzymes of fungal origin. Starting from a three-member gene family of secreted putative "lipases/esterases" preferentially expressed in the symbiotic phase of the mycorrhizal fungus Tuber melanosporum ("black truffle"), we show here that these enzymes (TmelEST1-3) are dimeric, heat-resistant carboxylesterases capable of hydrolyzing various short/medium chain p-nitrophenyl esters. TmelEST2 was the most active (kcat = 2302 s-1 for p-nitrophenyl-butyrate) and thermally stable (T50 = 68.3 °C), while TmelEST3 was the only one displaying some activity on tertiary alcohol esters. X-ray diffraction analysis of TmelEST2 revealed a classical α/ß hydrolase-fold structure, with a network of dimer-stabilizing intermolecular interactions typical of archaea esterases. The predicted structures of TmelEST1 and 3 are overall quite similar to that of TmelEST2 but with some important differences. Most notably, the much smaller volume of the substrate-binding pocket and the more acidic electrostatic surface profile of TmelEST1. This was also the only TmelEST capable of hydrolyzing feruloyl-esters, suggestinng a possible role in root cell-wall deconstruction during symbiosis establishment. In addition to their potential biotechnological interest, TmelESTs raise important questions regarding the evolutionary recruitment of archaea-like enzymes into mesophilic subterranean fungi such as truffles.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/fisiologia , Hidrolases de Éster Carboxílico/metabolismo , Micorrizas/enzimologia , Micorrizas/fisiologia , Simbiose , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Domínio Catalítico , Estabilidade Enzimática , Temperatura Alta , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Eletricidade Estática , Especificidade por Substrato , Difração de Raios X
15.
Protein Expr Purif ; 129: 150-157, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27133916

RESUMO

Internal grafting of designed peptides to scaffold proteins is a valuable strategy for a variety of applications including recombinant peptide antigen construction. A peptide epitope from human papillomavirus (HPV) minor capsid protein L2 displayed on thioredoxin (Trx) has been validated preclinically as a broadly protective and low-cost alternative HPV vaccine. Focusing on thioredoxin from the hyperthermophilic archaebacterium Pyrococcus furiosus (PfTrx) as a scaffold, we have constructed a modified Pichia pastoris expression vector and used a PfTrx fusion derivative containing three tandemly repeated copies of a 19 amino acids peptide epitope from HPV-L2 for expression optimization and biochemical-immunological characterization of the Pichia-produced PfTrx-L2 antigen. We show that PfTrx-L2 is produced at high levels (up to 100 mg from a 100 ml starting culture using a multi-cycle induction protocol) and secreted into the culture medium as a highly enriched (>70% pure), non-glycosylated polypeptide that can be purified to homogeneity in a single step. Oxidation and aggregation state, thermal stability and immunogenicity of the endotoxin-free PfTrx-L2 antigen produced in P. pastoris were tested and found to be identical to those of the same antigen produced in Escherichia coli. Secretory production of endotoxin-free PfTrx-peptides in P. pastoris represents a cost- and time-effective alternative to E. coli production. Specifically designed for peptide antigens, the PfTrx-expression vector and conditions described herein are easily transferable to a variety of applications centred on the use of structurally constrained bioactive peptides as immune as well as target-specific binder reagents.


Assuntos
Proteínas Arqueais , Proteínas do Capsídeo , Papillomaviridae/genética , Pichia/metabolismo , Pyrococcus furiosus/genética , Tiorredoxinas , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Proteínas do Capsídeo/metabolismo , Temperatura Alta , Humanos , Pichia/genética , Pyrococcus furiosus/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação , Tiorredoxinas/metabolismo
16.
Biochim Biophys Acta ; 1837(8): 1305-15, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24685428

RESUMO

The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process.


Assuntos
Citocromos c6/química , Citocromos f/química , Complexos Multiproteicos/química , Fotossíntese , Cianobactérias/química , Cianobactérias/metabolismo , Citocromos c6/metabolismo , Citocromos f/metabolismo , Transporte de Elétrons , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Complexos Multiproteicos/metabolismo , Plastocianina/química , Plastocianina/metabolismo , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas , Difração de Raios X
17.
J Biol Chem ; 288(3): 1533-47, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23192346

RESUMO

Fungal phospholipases are members of the fungal/bacterial group XIV secreted phospholipases A(2) (sPLA(2)s). TbSP1, the sPLA(2) primarily addressed in this study, is up-regulated by nutrient deprivation and is preferentially expressed in the symbiotic stage of the ectomycorrhizal fungus Tuber borchii. A peculiar feature of this phospholipase and of its ortholog from the black truffle Tuber melanosporum is the presence of a 54-amino acid sequence of unknown functional significance, interposed between the signal peptide and the start of the conserved catalytic core of the enzyme. X-ray diffraction analysis of a recombinant TbSP1 form corresponding to the secreted protein previously identified in T. borchii mycelia revealed a structure comprising the five α-helices that form the phospholipase catalytic module but lacking the N-terminal 54 amino acids. This finding led to a series of functional studies that showed that TbSP1, as well as its T. melanosporum ortholog, is a self-processing pro-phospholipase A(2), whose phospholipase activity increases up to 80-fold following autoproteolytic removal of the N-terminal peptide. Proteolytic cleavage occurs within a serine-rich, intrinsically flexible region of TbSP1, does not involve the phospholipase active site, and proceeds via an intermolecular mechanism. Autoproteolytic activation, which also takes place at the surface of nutrient-starved, sPLA(2) overexpressing hyphae, may strengthen and further control the effects of phospholipase up-regulation in response to nutrient deprivation, also in the context of symbiosis establishment and mycorrhiza formation.


Assuntos
Proteínas Fúngicas/química , Micélio/enzimologia , Micorrizas/enzimologia , Fosfolipases A2/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Escherichia coli/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Micélio/genética , Micorrizas/genética , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Plantas/microbiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Simbiose/fisiologia
18.
J Lipid Res ; 51(6): 1332-43, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19965581

RESUMO

The main retinol carriers in the cytosol are the cellular retinol-binding proteins types I and II (CRBP-I and CRBP-II), which exhibit distinct tissue distributions. They play different roles in the maintenance of vitamin A homeostasis and feature a 100-fold difference in retinol affinity whose origin has not been described in detail. NMR-based hydrogen/deuterium exchange measurements show that, while retinol binding endows both proteins with a more rigid structure, many amide protons exchange much faster in CRBP-II than in CRBP-I in both apo and holo form, despite the conserved three-dimensional fold. The remarkable difference in intrinsic stability between the two homologs appears to modulate their binding properties: the stronger retinol binder CRBP-I displays a reduced flexibility of the backbone structure with respect to CRBP-II. This difference must derive from specific evolution-based amino acid substitutions, resulting in additional stabilization of the CRBP-I scaffold: in fact, we identified a number of potential salt bridges on the protein surface as well as several key interactions inside the binding cavity. Furthermore, our NMR data demonstrate that helix alphaII of the characteristic helix-turn-helix motif in the ligand portal region exists in both apo and holo CRBP-II. Hence, the previously proposed model of retinol binding needs to be revised.


Assuntos
Proteínas Celulares de Ligação ao Retinol/metabolismo , Vitamina A/metabolismo , Sequência de Aminoácidos , Animais , Apoproteínas/química , Apoproteínas/metabolismo , Medição da Troca de Deutério , Evolução Molecular , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Ratos , Proteínas Celulares de Ligação ao Retinol/química , Alinhamento de Sequência
19.
Appl Magn Reson ; 37(1-4): 219-227, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19960067

RESUMO

As part of our ongoing project that aims at the optimum characterization of the electronic structure of the blue-copper site of azurin from Pseudomonas aeruginosa, we present the complete hyperfine tensors of the protons bound to the Cbeta atom of the copper-bound cysteine 112. These tensors have been obtained from a 95 GHz pulsed electron-nuclear double resonance study of a single crystal of the protein.

20.
Biochim Biophys Acta ; 1794(3): 496-505, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19118653

RESUMO

The mutant S64C of the short-chain flavodoxin from Desulfovibrio vulgaris has been designed to introduce an accessible and reactive group on the protein surface. Crystals have been obtained of both the monomeric and homodimeric forms of the protein, with the cofactor FMN in either the oxidized or the one electron-reduced (semiquinone) state, and the structures have been determined to high resolution. The redox properties of the different species have been investigated and the variations observed with respect to wild type have been related to the structural changes induced by the mutation and S-S bridge formation.


Assuntos
Desulfovibrio vulgaris/genética , Flavodoxina/química , Flavodoxina/genética , Cristalização , Cristalografia por Raios X , Desulfovibrio vulgaris/química , Dimerização , Eletroforese em Gel de Poliacrilamida , Mercaptoetanol/farmacologia , Modelos Moleculares , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...