Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895054

RESUMO

Algae-driven processes, such as direct CO2 fixation into glycerol, provide new routes for sustainable chemical production in synergy with greenhouse gas mitigation. The marine microalgae Dunaliella tertiolecta is reported to accumulate high amounts of intracellular glycerol upon exposure to high salt concentrations. We have conducted a comprehensive, time-resolved systems biology study to decipher the metabolic response of D. tertiolecta up to 24 h under continuous light conditions. Initially, due to a lack of reference sequences required for MS/MS-based protein identification, a high-quality draft genome of D. tertiolecta was generated. Subsequently, a database was designed by combining the genome with transcriptome data obtained before and after salt stress. This database allowed for detection of differentially expressed proteins and identification of phosphorylated proteins, which are involved in the short- and long-term adaptation to salt stress, respectively. Specifically, in the rapid salt adaptation response, proteins linked to the Ca2+ signaling pathway and ion channel proteins were significantly increased. While phosphorylation is key in maintaining ion homeostasis during the rapid adaptation to salt stress, phosphofructokinase is required for long-term adaption. Lacking ß-carotene, synthesis under salt stress conditions might be substituted by the redox-sensitive protein CP12. Furthermore, salt stress induces upregulation of Calvin-Benson cycle-related proteins.


Assuntos
Clorofíceas , Glicerol , Glicerol/metabolismo , Espectrometria de Massas em Tandem , Clorofíceas/metabolismo , Fotossíntese , Estresse Salino
2.
Biotechnol Adv ; 67: 108210, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460047

RESUMO

Lipopeptides are surface active, natural products of bacteria, fungi and green-blue algae origin, having diverse structures and functionalities. In analogy, a number of chemical synthesis techniques generated new designer lipopeptides with desirable features and functions. Lipopetides are self-assembly guided, supramolecular compounds which have the capacity of high-density presentation of the functional epitopes at the surface of the nanostructures. This feature contributes to their successful application in several industry sectors, including food, feed, personal care, and pharmaceutics. In this comprehensive review, the novel class of ribosomally synthesized lipopeptides is introduced alongside the more commonly occuring non-ribosomal lipopeptides. We highlight key representatives of the most researched as well as recently described lipopeptide families, with emphasis on structural features, self-assembly and associated functions. The common biological, chemical and hybrid production routes of lipopeptides, including prominent analogues and derivatives are also discussed. Furthermore, genetic engineering strategies aimed at increasing lipopeptide yields, diversity and biological activity are summarized and exemplified. With respect to application, this work mainly details the potential of lipopeptides in personal care and cosmetics industry as cleansing agents, moisturizer, anti-aging/anti-wrinkling, skin whitening and preservative agents as well as the pharmaceutical industry as anitimicrobial agents, vaccines, immunotherapy, and cancer drugs. Given that this review addresses human applications, we conclude on the topic of safety of lipopeptide formulations and their sustainable production.


Assuntos
Cosméticos , Lipopeptídeos , Humanos , Lipopeptídeos/química , Bactérias , Engenharia Genética , Cosméticos/química , Preparações Farmacêuticas , Tensoativos/química
3.
Microorganisms ; 11(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985127

RESUMO

Rhodosporidium toruloides is a carotenogenic, oleogenic yeast that is able to grow in diverse environments. In this study, the proteomic and metabolic responses to copper stress in the two haplotypes IFO0559 and IFO0880 were assessed. 0.5 mM Cu(I) extended the lag phase of both strains significantly, while only a small effect was observed for Cu(II) treatment. Other carotenogenic yeasts such as Rhodotorula mucilaginosa are known to accumulate high amounts of carotenoids as a response to oxidative stress, posed by excess copper ion activity. However, no significant increase in carotenoid accumulation for both haplotypes of R. toruloides after 144 h of 0.5 mM Cu(I) or Cu(II) stress was observed. Yet, an increase in lipid production was detected, when exposed to Cu(II), additionally, proteins related to fatty acid biosynthesis were detected in increased amounts under stress conditions. Proteomic analysis revealed that besides the activation of the enzymatic oxidative stress response, excess copper affected iron-sulfur and zinc-containing proteins and caused proteomic adaptation indicative of copper ion accumulation in the vacuole, mitochondria, and Golgi apparatus.

4.
PLoS Biol ; 21(3): e3002063, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996247

RESUMO

The steady increase in human population and a rising standard of living heighten global demand for energy. Fossil fuels account for more than three-quarters of energy production, releasing enormous amounts of carbon dioxide (CO2) that drive climate change effects as well as contributing to severe air pollution in many countries. Hence, drastic reduction of CO2 emissions, especially from fossil fuels, is essential to tackle anthropogenic climate change. To reduce CO2 emissions and to cope with the ever-growing demand for energy, it is essential to develop renewable energy sources, of which biofuels will form an important contribution. In this Essay, liquid biofuels from first to fourth generation are discussed in detail alongside their industrial development and policy implications, with a focus on the transport sector as a complementary solution to other environmentally friendly technologies, such as electric cars.


Assuntos
Poluição do Ar , Biocombustíveis , Humanos , Biocombustíveis/análise , Dióxido de Carbono , Combustíveis Fósseis/análise , Mudança Climática
5.
Microorganisms ; 10(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36014097

RESUMO

Rhodococcus erythropolis is resilient to various stressors. However, the response of R. erythropolis towards light has not been evaluated. In this study, R. erythropolis was exposed to different wavelengths of light. Compared to non-illuminated controls, carotenoid levels were significantly increased in white (standard warm white), green (510 nm) and blue light (470 nm) illuminated cultures. Notably, blue light (455, 425 nm) exhibited anti-microbial effects. Interestingly, cellular lipid composition shifted under light stress, increasing odd chain fatty acids (C15:0, C17:1) cultured under white (standard warm white) and green (510 nm) light. When exposed to blue light (470, 455, 425 nm), fatty acid profiles shifted to more saturated fatty acids (C16:1 to C16:0). Time-resolved proteomics analysis revealed several oxidative stress-related proteins to be upregulated under light illumination.

6.
EMBO J ; 41(3): e108664, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34981847

RESUMO

Heat stress is a major environmental stress type that can limit plant growth and development. To survive sudden temperature increases, plants utilize the heat shock response, an ancient signaling pathway. Initial results had suggested a role for brassinosteroids (BRs) in this response. Brassinosteroids are growth-promoting steroid hormones whose activity is mediated by transcription factors of the BES1/BZR1 subfamily. Here, we provide evidence that BES1 can contribute to heat stress signaling. In response to heat, BES1 is activated even in the absence of BRs and directly binds to heat shock elements (HSEs), known binding sites of heat shock transcription factors (HSFs). HSFs of the HSFA1 type can interact with BES1 and facilitate its activity in HSE binding. These findings lead us to propose an extended model of the heat stress response in plants, in which the recruitment of BES1 is a means of heat stress signaling cross-talk with a central growth regulatory pathway.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Arabidopsis , Proteínas de Arabidopsis/genética , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA