Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 914: 169991, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215843

RESUMO

Cover crops reduce nitrate leached, but effects on nitrous oxide (N2O) emissions are mixed. Cover crops can reduce N2O emissions by reducing levels of mineral nitrogen (N) and surface soil moisture during spring. Cover crops can also increase N2O emissions by adding organic substrates, releasing N during decomposition, or increasing summer soil water content. Winter-killed cover crops can increase soluble organic C and N during periods of typically low microbial activity. We hypothesized that planting a cover crop mix of radish (Raphanus sativus)-crimson clover (Trifolium incarnatum)-rye (Secale cereale) would increase direct N2O emissions relative to no cover crop, and result in lower direct and indirect N2O emissions than planting radish alone. We also hypothesized that extending the cover crop growing season, by planting earlier and killing later, would increase direct N2O emissions during winter, decrease direct N2O emissions during summer, and decrease indirect N2O emissions. To address these hypotheses, we conducted two field experiments (on sandy and silty soils) over four site-years. We measured cover crop biomass and N content, soil mineral N concentrations, soil moisture, green canopy cover, soil porewater nitrate, direct N2O emissions, and estimated indirect N2O emissions. Nitrous oxide emissions were ~ 7.8 times greater at the silty than the sandy sites due to greater soil moisture retention. Site-years with high radish biomass exhibited greater direct N2O emissions than sites with low radish biomass following winter-kill. Indirect N2O emissions were decreased ~7 % by planting cover crops and by ~70 % by planting cover crops early. Fertilizer induced emission peaks were 8.2 times greater than all previous N2O emissions combined at a silty site. Our results suggested that soil texture and fertilization played an important role in direct N2O emissions, while cover crop species, biomass, and timing played a more important role in NO3 leached, and thus, indirect N2O emissions.


Assuntos
Solo , Trifolium , Solo/química , Óxido Nitroso/análise , Nitratos , Areia , Estações do Ano , Produtos Agrícolas , Minerais , Fertilização , Agricultura , Fertilizantes , Nitrogênio/análise
2.
J Environ Qual ; 52(4): 873-885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37145888

RESUMO

Phosphorus (P) budgets can be useful tools for understanding nutrient cycling and quantifying the effectiveness of nutrient management planning and policies; however, uncertainties in agricultural nutrient budgets are not often quantitatively assessed. The objective of this study was to evaluate uncertainty in P fluxes (fertilizer/manure application, atmospheric deposition, irrigation, crop removal, surface runoff, and leachate) and the propagation of these uncertainties to annual P budgets. Data from 56 cropping systems in the P-FLUX database, which spans diverse rotations and landscapes across the United States and Canada, were evaluated. Results showed that across cropping systems, average annual P budget was 22.4 kg P ha-1 (range = -32.7 to 340.6 kg P ha-1 ), with an average uncertainty of 13.1 kg P ha-1 (range = 1.0-87.1 kg P ha-1 ). Fertilizer/manure application and crop removal were the largest P fluxes across cropping systems and, as a result, accounted for the largest fraction of uncertainty in annual budgets (61% and 37%, respectively). Remaining fluxes individually accounted for <2% of the budget uncertainty. Uncertainties were large enough that determining whether P was increasing, decreasing, or not changing was inconclusive in 39% of the budgets evaluated. Findings indicate that more careful and/or direct measurements of inputs, outputs, and stocks are needed. Recommendations for minimizing uncertainty in P budgets based on the results of the study were developed. Quantifying, communicating, and constraining uncertainty in budgets among production systems and multiple geographies is critical for engaging stakeholders, developing local and national strategies for P reduction, and informing policy.


Assuntos
Fertilizantes , Fósforo , Esterco , Incerteza , Agricultura
3.
PLoS One ; 17(4): e0267757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35482753

RESUMO

Efficient use of nitrogen (N) is essential to protect water quality in high-input organic vegetable production systems, but little is known about the long-term effects of organic management on N mass balances. We measured soil N and tabulated N inputs (organic fertilizers, compost, irrigation water, atmospheric deposition, cover crop seed, vegetable transplant plugs and fixation by legume cover crops) and exports in harvested crops (lettuce, broccoli) over eight years to calculate soil surface and soil system N mass balances for the Salinas Organic Cropping Systems study in Salinas, CA. Our objectives were to 1) quantify the long-term effects of compost, cover crop frequency and cover crop type on soil N, cover crop and vegetable crop N uptake, and yield, and 2) tabulate N balances to assess the effects of these factors on N export in harvested crops, soil N storage and potential N loss. Results show that across all systems only 13 to 23% of N inputs were exported in harvest. Annual compost applications increased soil N stocks but had little effect on vegetable N uptake or yield, increasing the cumulative soil system N balance surplus over eight years by 999 kg ha-1, relative to the system receiving organic fertilizers alone. Annually planted winter cover crops increased N availability, crop uptake and export; however, biological N fixation by legumes negated the positive effect of increased harvest exports on the balance surplus in the legume-rye cover cropped system. Over eight years, rye cover crops improved system performance and reduced the cumulative N surplus by 384 kg ha-1 relative to the legume-rye mixture by increasing N retention and availability without increasing N inputs. Reduced reliance on external compost inputs and increased use of annually planted non-legume cover crops can improve efficient N use and cropping system yield, consequently improving environmental performance.


Assuntos
Fabaceae , Nitrogênio , Agricultura/métodos , Produtos Agrícolas , Fertilizantes/análise , Solo , Verduras
4.
J Environ Qual ; 51(4): 540-551, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34309029

RESUMO

Manureshed management seeks to address systemic imbalances in nutrient distributions at scales beyond the farmgate and potentially across county and state boundaries. The U.S. poultry industry, which includes broilers, layers, pullets, and turkeys, has many characteristics that are compatible with achieving a vision of manureshed management, including a history of engaging in local and regional programs to better distribute manure resources. Despite widespread vertical integration that supports large-scale strategic decision making and dry manures that favor off-farm transport, there are still many challenges to poultry manureshed management that require engaging stakeholders other than just the poultry industry. Analysis of county-level nutrient budgets highlights the industry's "mega-manureshed," extending from the Mid-Atlantic, across the southeast, and into northwest Arkansas, Oklahoma, and Texas. The analysis also identifies areas with legacy nutrient build-up that are still present today. Implementing manureshed management in the U.S. poultry industry requires comprehensive consideration of manure treatment technologies, alternative uses such as bioenergy production, market development for treated manure products, transport of manure nutrients from source to sink areas, and manure brokering programs that promote manure nutrient distribution. Fortunately, past and present evolution and innovation within the industry places it as a likely leader of the manureshed vision.


Assuntos
Esterco , Aves Domésticas , Animais , Galinhas , Feminino , Nitrogênio/análise , Fósforo/análise
5.
Data Brief ; 33: 106481, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33294503

RESUMO

Data presented are on carbon (C) and nitrogen (N) inputs, and changes in soil C and N in eight systems during the first eight years of a tillage-intensive organic vegetable systems study that was focused on romaine lettuce and broccoli production in Salinas Valley on the central coast region of California. The eight systems differed in organic matter inputs from cover crops and urban yard-waste compost. The cover crops included cereal rye, a legume-rye mixture, and a mustard mixture planted at two seeding rates (standard rate 1x versus high rate 3x). There were three legume-rye 3x systems that differed in compost inputs (0 versus 7.6 Mg ha-1 vegetable crop-1) and cover cropping frequency (every winter versus every fourth winter). The data include: (1) changes in soil total organic C and total N concentrations and stocks and nitrate N (NO3-N) concentrations over 8 years, (2) cumulative above ground and estimated below ground C and N inputs, cover crop and crop N uptake, and harvested crop N export over 8 years, (3) soil permanganate oxidizable carbon (POX-C) concentrations and stocks at time 0, 6 and 8 years, and (4) cumulative, estimated yields of lettuce and broccoli (using total biomass and harvest index values) over the 8 years. The C inputs from the vegetables and cover crops included estimates of below ground inputs based on shoot biomass and literature values for shoot:root. The data in this article support and augment information presented in the research article "Winter cover crops increase readily decomposable soil carbon, but compost drives total soil carbon during eight years of intensive, organic vegetable production in California".

7.
J Environ Qual ; 49(5): 1408-1420, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016442

RESUMO

Despite the numerous benefits of biosolids, concerns over nutrient losses restrict the extent to which biosolids can be beneficially reused. We evaluated the effectiveness of biochar in controlling the lability of nutrients in agricultural land. This study was designed to investigate the potential impacts of co-applying biochar with biosolids or inorganic fertilizer on N and P leaching losses. A companion paper focuses on greenhouse gas responses. Nutrients were surface applied as biosolids (aerobically digested Class B) and inorganic fertilizer (ammonium nitrate and triple superphosphate) to an established perennial pasture at equivalent annual rates typical of field practices. Biochar was applied at an annual rate of 20 Mg ha-1 . Leachate N and P were monitored using passive-capillary drainage lysimeters. Results demonstrated significant temporal variability in leachate N and P, with larger pulses generally occurring during periods of high water table levels or after intensive rainfall. Inorganic fertilizer generally resulted in greater leachate N and P losses than biosolids. No differences in leachate N and P losses between biosolids and control were observed. Approximately 1% of applied N was lost via leaching from biosolids treatments vs. 16% for inorganic fertilizer. Regardless of the P source, negligible (0.1-0.2% of applied P), cumulative P leaching occurred during the 3-yr study. Biochar had no effect on P leaching but reduced N leaching from treatments receiving inorganic fertilizer by 60%. Prudent nutrient management is possible even on biosolids-amended Spodosols with high water tables.


Assuntos
Nitrogênio , Fósforo , Carvão Vegetal , Pradaria , Nutrientes , Solo
8.
J Environ Qual ; 49(5): 1421-1434, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33016444

RESUMO

Land application of biochar reportedly provides many benefits, including reduced risk of nutrient transport, greenhouse gas (GHG) emission mitigation, and increased soil C storage, but additional field validation is needed. We evaluated the effectiveness of biochar in controlling the lability of nutrients in agricultural land. This study was designed to evaluate the impacts of biochar co-applied with various N and P sources on GHG fluxes from a subtropical grassland. Nutrients (inorganic fertilizer and aerobically digested Class B biosolids) were surface applied at a rate of 160 kg plant available N ha-1  yr-1 with or without biochar (applied at 20 Mg ha-1 ). Greenhouse gas (CO2 , CH4 , and N2 O) fluxes were assessed using static chambers and varied significantly, both temporally and with treatments. Greenhouse gas fluxes ranged from 1,247 to 23,160, -0.7 to 42, and -1.4 to 376 mg m-2 d-1 for CO2 , N2 O, and CH4 , respectively. Results of the 3-yr field study demonstrated strong seasonal variability associated with GHG emissions. Nutrient source had no effect on soil CO2 and CH4 emissions, but annual and cumulative (3-yr) N2 O emissions increased with biosolids (8 kg N2 O ha-1  yr-1 ) compared with inorganic fertilizer (5 kg N2 O ha-1  yr-1 ) application. Data suggested that environmental conditions played a more important role on GHG fluxes than nutrient additions. Biochar reduced CO2 emissions modestly (<9%) but had no effects on N2 O and CH4 emissions.


Assuntos
Gases de Efeito Estufa , Dióxido de Carbono/análise , Carvão Vegetal , Pradaria , Metano/análise , Óxido Nitroso/análise , Nutrientes , Solo
9.
PLoS One ; 15(2): e0228677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32027701

RESUMO

Maintaining soil organic carbon (SOC) in frequently tilled, intensive organic vegetable production systems is a challenge that is not well understood. Compost and cover crops are often used to add organic matter to the soil in these systems. Compost contributes relatively stabilized carbon (C) while cover crops provide readily degradable (labile) organic matter. Our objectives were to quantify C inputs, and to assess the effects of urban yard-waste compost, winter cover crop frequency and cover crop type on SOC and labile C stocks during eight years of intensive, organic production that usually included two vegetable crops per year in a long-term systems study in Salinas, California. Total C inputs from pelleted fertilizer, compost, vegetable transplant potting mix, vegetable residue and cover crops, including estimates of below ground inputs, ranged from 40 to 108 Mg ha-1 in the five systems evaluated. Following a rapid decline in SOC stocks in year 1, compost had the largest effect on SOC stocks increasing mean SOC over years 2 to 8 by an average of 9.4 Mg ha-1, while increased cover crop frequency (annual vs. quadrennial) led to an additional 3.4 Mg ha-1 increase. In contrast, cover cropping frequency had the largest effect on permanganate oxidizable labile C (POX-C), increasing POX-C by 26% after 8 years. Labile POX-C was well correlated with microbial biomass C and nitrogen. Compost had the greatest effect on total SOC stocks, while increasing cover crop frequency altered the composition of SOC by increasing the proportion of labile C. These results suggest that frequent winter cover cropping has a greater potential than compost to increase nutrient availability and vegetable yields in high-input, tillage intensive vegetable systems.


Assuntos
Carbono/análise , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , California , Compostagem , Estações do Ano , Verduras
10.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31836576

RESUMO

Despite glyphosate's wide use for weed control in agriculture, questions remain about the herbicide's effect on soil microbial communities. The existing scientific literature contains conflicting results, from no observable effect of glyphosate to the enrichment of agricultural pathogens such as Fusarium spp. We conducted a comprehensive field-based study to compare the microbial communities on the roots of plants that received a foliar application of glyphosate to adjacent plants that did not. The 2-year study was conducted in Beltsville, MD, and Stoneville, MS, with corn and soybean crops grown in a variety of organic and conventional farming systems. By sequencing environmental metabarcode amplicons, the prokaryotic and fungal communities were described, along with chemical and physical properties of the soil. Sections of corn and soybean roots were plated to screen for the presence of plant pathogens. Geography, farming system, and season were significant factors determining the composition of fungal and prokaryotic communities. Plots treated with glyphosate did not differ from untreated plots in overall microbial community composition after controlling for other factors. We did not detect an effect of glyphosate treatment on the relative abundance of organisms such as Fusarium spp.IMPORTANCE Increasing the efficiency of food production systems while reducing negative environmental effects remains a key societal challenge to successfully meet the needs of a growing global population. The herbicide glyphosate has become a nearly ubiquitous component of agricultural production across the globe, enabling an increasing adoption of no-till agriculture. Despite this widespread use, there remains considerable debate on the consequences of glyphosate exposure. In this paper, we examine the effect of glyphosate on soil microbial communities associated with the roots of glyphosate-resistant crops. Using metabarcoding techniques, we evaluated prokaryotic and fungal communities from agricultural soil samples (n = 768). No effects of glyphosate were found on soil microbial communities associated with glyphosate-resistant corn and soybean varieties across diverse farming systems.


Assuntos
Bactérias/isolamento & purificação , Fungos/isolamento & purificação , Glicina/análogos & derivados , Herbicidas/administração & dosagem , Microbiota , Raízes de Plantas/microbiologia , Microbiologia do Solo , Glicina/administração & dosagem , Maryland , Microbiota/efeitos dos fármacos , Mississippi , Micobioma , Glycine max/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Glifosato
11.
Sci Rep ; 8(1): 2004, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386563

RESUMO

We used complementary morphological and DNA metabarcoding approaches to characterize soil nematode communities in three cropping systems, conventional till (CT), no-till (NT) and organic (ORG), from a long-term field experiment. We hypothesized that organic inputs to the ORG system would promote a more abundant nematode community, and that the NT system would show a more structured trophic system (higher Bongers MI) than CT due to decreased soil disturbance. The abundance of Tylenchidae and Cephalobidae both showed positive correlations to soil organic carbon and nitrogen, which were highest in the ORG system. The density of omnivore-predator and bacterial-feeding nematodes was reduced in NT soils compared to CT, while some plant-parasitic taxa increased. NT soils had similar Bongers MI values to CT, suggesting they contained nematode communities associated with soils experiencing comparable levels of disturbance. Metabarcoding revealed within-family differences in nematode diversity. Shannon and Simpson's index values for the Tylenchidae and Rhabditidae were higher in the ORG system than CT. Compared to morphological analysis, metabarcoding over- or underestimated the prevalence of several nematode families and detected some families not observed based on morphology. Discrepancies between the techniques require further investigation to establish the accuracy of metabarcoding for characterization of soil nematode communities.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Metagenoma , Solo/parasitologia , Tylenchida/genética , Animais , Tylenchida/classificação
12.
Sci Total Environ ; 618: 927-940, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29111244

RESUMO

Nitrous oxide (N2O) is an important greenhouse gas and a catalyst of stratospheric ozone decay. Agricultural soils are the source of 75% of anthropogenic N2O emissions globally. Recently, significant attention has been directed at examining effects of conservation tillage on carbon sequestration in agricultural systems. However, limited knowledge is available regarding how these practices impact N2O emissions, especially for organic vegetable production systems. In this context, a three-year study was conducted in a well-drained sandy loam field transitioning to organic vegetable production in the Mid-Atlantic coastal plain of USA to investigate impacts of conservation tillage [strip till (ST) and no-till (NT)] and conventional tillage (CT) [with black plastic mulch (CT-BP) and bare-ground (CT-BG)] on N2O emissions. Each year, a winter cover crop mixture (forage radish: Raphanus sativus var. longipinnatus, crimson clover: Trifolium incarnatum L., and rye: Secale cereale L.) was grown and flail-mowed in the spring. Nearly 80% of annual N2O-nitrogen (N) emissions occurred during the vegetable growing season for all treatments. Annual N2O-N emissions were greater in CT-BP than in ST and NT, and greater in CT-BG than in NT, but not different between CT-BG and CT-BP, ST and NT, or CT-BG and ST. Conventional tillage promoted N mineralization and plastic mulch increased soil temperature, which contributed to greater N2O-N fluxes. Though water filled porosity in NT was higher and correlated well with N2O-N fluxes, annual N2O-N emissions were lowest in NT suggesting a lack of substrates for nitrification and denitrification processes. Crop yield was lowest in NT in Year 1 and CT-BP in Year 3 but yield-scaled N2O-N emissions were consistently greatest in CT-BP and lowest in NT each year. Our results suggest that for coarse-textured soils in the coastal plain with winter cover crops, conservation tillage practices may reduce N2O emissions in organic vegetable production systems.

13.
Sci Rep ; 7(1): 688, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28386102

RESUMO

Variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.A., comparing conventional and organic management systems. Precipitation and temperature variables explained much of the yield variability, with precipitation and heat stress during the late vegetative and early reproductive phases of crop growth accounting for the majority of yield variability in all crops and management systems. Crop yields under conventional and organic management followed similar periodic patterns, but yields were 31% and 20% lower in organic than conventional corn and soybean, respectively. The efficiency of grain yield per unit precipitation was higher under conventional than organic management, highlighting the importance of crop management for optimizing production in response to meteorological variability. Periodic yield and precipitation patterns did not consistently align with global meteorological cycles such as the El Niño Southern Oscillation.

14.
J Environ Qual ; 46(2): 247-254, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28380563

RESUMO

Precipitation and irrigation induce pulses of NO emissions in agricultural soils, but the magnitude, duration, and timing of these pulses remain uncertain. This uncertainty makes it difficult to accurately extrapolate emissions from unmeasured time periods between chamber sampling events. Therefore, we developed a modeling protocol to predict NO emissions from data collected daily for 7 d after wetting events. Within a cover crop-based corn ( L.) production system in Beltsville, MD, we conducted the 7-d time series during four time periods representing a range of corn growth stages in 2013 and 2014. Treatments included mixtures and monocultures of grass and legume cover crops that were fertilized with pelletized poultry litter or urea-ammonium nitrate solution (9-276 kg N ha). Most fluxes did not exhibit the expected exponential decay over time (82%); therefore, cumulative emissions were calculated using trapezoidal integration over 7 d after the wetting event. Cumulative 7-d emissions were well correlated with single point gas fluxes on the second day after a wetting event using a generalized linear mixed model (ln[emissions] = 0.809∙ln[flux] + 2.47). Soil chemical covariates before or after a wetting event were weakly associated with cumulative emissions. The ratio of dissolved organic C to total inorganic N was negatively correlated with cumulative emissions ( = 0.23-0.29), whereas nitrate was positively correlated with cumulative emissions ( = 0.23-0.33). Our model is an innovative approach that is calibrated using site-specific time series data, which may then be used to estimate short-term NO emissions after wetting events using only a single flux measurement.


Assuntos
Óxido Nitroso/análise , Solo/química , Agricultura , Produtos Agrícolas , Nitrogênio
15.
Environ Microbiol ; 17(8): 2791-804, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25627647

RESUMO

Fungi in the genus Metarhizium are insect pathogens able to function in other niches, including soil and plant rhizosphere habitats. In agroecosystems, cropping and tillage practices influence soil fungal communities with unknown effects on the distribution of Metarhizium, whose presence can reduce populations of crop pests. We report results from a selective media survey of Metarhizium in soils sampled from a long-term experimental farming project in the mid-Atlantic region. Field plots under soybean cultivation produced higher numbers of Metarhizium colony-forming units (cfu) than corn or alfalfa. Plots managed organically and via chisel-till harboured higher numbers of Metarhizium cfu than no-till plots. Sequence typing of Metarhizium isolates revealed four species, with M. robertsii and M. brunneum predominating. The M. brunneum population was essentially fixed for a single clone as determined by multilocus microsatellite genotyping. In contrast, M. robertsii was found to contain significant diversity, with the majority of isolates distributed between two principal clades. Evidence for recombination was observed only in the most abundant clade. These findings illuminate multiple levels of Metarhizium diversity that can be used to inform strategies by which soil Metarhizium populations may be manipulated to exert downward pressure on pest insects and promote plant health.


Assuntos
Controle de Insetos/métodos , Insetos/microbiologia , Metarhizium/classificação , Metarhizium/genética , Microbiota , Agricultura , Animais , Cetrimônio , Compostos de Cetrimônio/farmacologia , Genótipo , Guanidinas/farmacologia , Medicago sativa/microbiologia , Metarhizium/isolamento & purificação , Repetições de Microssatélites/genética , Tipagem de Sequências Multilocus , Plantas/microbiologia , Rizosfera , Solo , Microbiologia do Solo , Glycine max/microbiologia , Zea mays/microbiologia
16.
PLoS One ; 9(7): e103720, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078458

RESUMO

To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg(-1); 8.6%) from the IAsoil than the MDsoil (0.9 g kg(-1), 6.3%); fractions and coefficients suggest losses were principally from IAsoil's resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230%) and Cs (38% vs 21%) and decreases in ka (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil's response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents.


Assuntos
Compostos de Nitrogênio/química , Solo/química , Dióxido de Carbono/análise , Dióxido de Carbono/química , Produtos Agrícolas/química , Fertilizantes/análise , Compostos de Nitrogênio/análise , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...