Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6695): 573-579, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696577

RESUMO

Neurons on the left and right sides of the nervous system often show asymmetric properties, but how such differences arise is poorly understood. Genetic screening in zebrafish revealed that loss of function of the transmembrane protein Cachd1 resulted in right-sided habenula neurons adopting left-sided identity. Cachd1 is expressed in neuronal progenitors, functions downstream of asymmetric environmental signals, and influences timing of the normally asymmetric patterns of neurogenesis. Biochemical and structural analyses demonstrated that Cachd1 can bind simultaneously to Lrp6 and Frizzled family Wnt co-receptors. Consistent with this, lrp6 mutant zebrafish lose asymmetry in the habenulae, and epistasis experiments support a role for Cachd1 in modulating Wnt pathway activity in the brain. These studies identify Cachd1 as a conserved Wnt receptor-interacting protein that regulates lateralized neuronal identity in the zebrafish brain.


Assuntos
Habenula , Neurogênese , Neurônios , Via de Sinalização Wnt , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Habenula/metabolismo , Habenula/embriologia , Neurônios/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Receptores Frizzled/metabolismo , Receptores Frizzled/genética , Receptores Wnt/metabolismo , Receptores Wnt/genética , Encéfalo/metabolismo , Mutação com Perda de Função , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
2.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537201

RESUMO

Asymmetries are essential for proper organization and function of organ systems. Genetic studies in bilaterians have shown signaling through the Nodal/Smad2 pathway plays a key, conserved role in the establishment of body asymmetries. Although the main molecular players in the network for the establishment of left-right asymmetry (LRA) have been deeply described in deuterostomes, little is known about the regulation of Nodal signaling in spiralians. Here, we identified orthologs of the egf-cfc gene, a master regulator of the Nodal pathway in vertebrates, in several invertebrate species, which includes the first evidence of its presence in non-deuterostomes. Our functional experiments indicate that despite being present, egf-cfc does not play a role in the establishment of LRA in gastropods. However, experiments in zebrafish suggest that a single amino acid mutation in the egf-cfc gene in at least the common ancestor of chordates was the necessary step to induce a gain of function in LRA regulation. This study shows that the egf-cfc gene likely appeared in the ancestors of deuterostomes and "protostomes", before being adopted as a mechanism to regulate the Nodal pathway and the establishment of LRA in some lineages of deuterostomes.


Assuntos
Cordados , Fator de Crescimento Epidérmico , Animais , Padronização Corporal/genética , Cordados/genética , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/química , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Peixe-Zebra/genética , Proteínas Ligadas por GPI/metabolismo
3.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520654

RESUMO

Appropriate patterning of the retina during embryonic development is assumed to underlie the establishment of spatially localised specialisations that mediate the perception of specific visual features. For example, in zebrafish, an area involved in high acuity vision (HAA) is thought to be present in the ventro-temporal retina. Here, we show that the interplay of the transcription factor Rx3 with Fibroblast Growth Factor and Hedgehog signals initiates and restricts foxd1 expression to the prospective temporal retina, initiating naso-temporal regionalisation of the retina. Abrogation of Foxd1 results in the loss of temporal and expansion of nasal retinal character, and consequent absence of the HAA. These structural defects correlate with severe visual defects, as assessed in optokinetic and optomotor response assays. In contrast, optokinetic responses are unaffected in the opposite condition, in which nasal retinal character is lost at the expense of expanded temporal character. Our study indicates that the establishment of temporal retinal character during early retinal development is required for the specification of the HAA, and suggests a prominent role of the temporal retina in controlling specific visual functions.


Assuntos
Proteínas Hedgehog , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas Hedgehog/metabolismo , Estudos Prospectivos , Retina/metabolismo , Visão Ocular
4.
Elife ; 102021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34545806

RESUMO

The vertebrate eye primordium consists of a pseudostratified neuroepithelium, the optic vesicle (OV), in which cells acquire neural retina or retinal pigment epithelium (RPE) fates. As these fates arise, the OV assumes a cup shape, influenced by mechanical forces generated within the neural retina. Whether the RPE passively adapts to retinal changes or actively contributes to OV morphogenesis remains unexplored. We generated a zebrafish Tg(E1-bhlhe40:GFP) line to track RPE morphogenesis and interrogate its participation in OV folding. We show that, in virtual absence of proliferation, RPE cells stretch and flatten, thereby matching the retinal curvature and promoting OV folding. Localized interference with the RPE cytoskeleton disrupts tissue stretching and OV folding. Thus, extreme RPE flattening and accelerated differentiation are efficient solutions adopted by fast-developing species to enable timely optic cup formation. This mechanism differs in amniotes, in which proliferation drives RPE expansion with a much-reduced need of cell flattening.


Rounded eyeballs help to optimize vision ­ but how do they acquire their distinctive shape? In animals with backbones, including humans, the eye begins to form early in development. A single layer of embryonic tissue called the optic vesicle reorganizes itself into a two-layered structure: a thin outer layer of cells, known as the retinal pigmented epithelium (RPE for short), and a thicker inner layer called the neural retina. If this process fails, the animal may be born blind or visually impaired. How this flat two-layered structure becomes round is still being investigated. In fish, studies have shown that the inner cell layer ­ the neural retina ­ generates mechanical forces that cause the developing tissue to curve inwards to form a cup-like shape. But it was unclear whether the outer layer of cells (the RPE) also contributed to this process. Moreno-Marmol et al. were able to investigate this question by genetically modifying zebrafish to make all new RPE cells fluoresce. Following the early development of the zebrafish eye under a microscope revealed that RPE cells flattened themselves into long thin structures that stretched to cover the entire neural retina. This change was made possible by the cell's internal skeleton reorganizing. In fact, preventing this reorganization stopped the RPE cells from flattening, and precluded the optic cup from acquiring its curved shape. The results thus confirmed a direct role for the RPE in generating curvature. The entire process did not require the RPE to produce new cells, allowing the curved shape to emerge in just a few hours. This is a major advantage for fast-developing species such as zebrafish. In species whose embryos develop more slowly, such as mice and humans, the RPE instead grows by producing additional cells ­ a process that takes many days. The development of the eye thus shows how various species use different evolutionary approaches to achieve a common goal.


Assuntos
Morfogênese , Epitélio Pigmentado da Retina/citologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Fenômenos Biomecânicos , Embrião não Mamífero , Desenvolvimento Embrionário , Retina , Peixe-Zebra/genética
5.
Front Cell Dev Biol ; 8: 373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32548116

RESUMO

Efficient and accurate DNA replication is particularly critical in stem and progenitor cells for successful proliferation and survival. The replisome, an amalgam of protein complexes, is responsible for binding potential origins of replication, unwinding the double helix, and then synthesizing complimentary strands of DNA. According to current models, the initial steps of DNA unwinding and opening are facilitated by the CMG complex, which is composed of a GINS heterotetramer that connects Cdc45 with the mini-chromosome maintenance (Mcm) helicase. In this work, we provide evidence that in the absence of GINS function DNA replication is cell autonomously impaired, and we also show that gins1 and gins2 mutants exhibit elevated levels of apoptosis restricted to actively proliferating regions of the central nervous system (CNS). Intriguingly, our results also suggest that the rapid cell cycles during early embryonic development in zebrafish may not require the function of the canonical GINS complex as neither zygotic Gins1 nor Gins2 isoforms seem to be present during these stages.

6.
Hum Genet ; 138(8-9): 993-1000, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31422478

RESUMO

In this brief commentary, we provide some of our thoughts and opinions on the current and future use of zebrafish to model human eye disease, dissect pathological progression and advance in our understanding of the genetic bases of microphthalmia, andophthalmia and coloboma (MAC) in humans. We provide some background on eye formation in fish and conservation and divergence across vertebrates in this process, discuss different approaches for manipulating gene function and speculate on future research areas where we think research using fish may prove to be particularly effective.


Assuntos
Oftalmopatias/genética , Peixe-Zebra/genética , Animais , Coloboma/genética , Humanos , Microftalmia/genética
7.
Elife ; 82019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30777146

RESUMO

The vertebrate eye originates from the eye field, a domain of cells specified by a small number of transcription factors. In this study, we show that Tcf7l1a is one such transcription factor that acts cell-autonomously to specify the eye field in zebrafish. Despite the much-reduced eye field in tcf7l1a mutants, these fish develop normal eyes revealing a striking ability of the eye to recover from a severe early phenotype. This robustness is not mediated through genetic compensation at neural plate stage; instead, the smaller optic vesicle of tcf7l1a mutants shows delayed neurogenesis and continues to grow until it achieves approximately normal size. Although the developing eye is robust to the lack of Tcf7l1a function, it is sensitised to the effects of additional mutations. In support of this, a forward genetic screen identified mutations in hesx1, cct5 and gdf6a, which give synthetically enhanced eye specification or growth phenotypes when in combination with the tcf7l1a mutation.


Assuntos
Olho/crescimento & desenvolvimento , Morfogênese , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Proliferação de Células , Embrião não Mamífero/metabolismo , Olho/patologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Cinética , Masculino , Mutação/genética , Placa Neural/embriologia , Neurogênese , Penetrância , Fenótipo , Prosencéfalo/embriologia , Proteína 1 Semelhante ao Fator 7 de Transcrição/genética , Regulação para Cima/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Zigoto/metabolismo
8.
Hum Genet ; 138(8-9): 917-936, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30073412

RESUMO

Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.


Assuntos
Olho/metabolismo , Proteínas Hedgehog/genética , Transdução de Sinais/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos
9.
Front Cell Dev Biol ; 6: 145, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30406103

RESUMO

The neural component of the zebrafish eye derives from a small group of cells known as the eye/retinal field. These cells, positioned in the anterior neural plate, rearrange extensively and generate the optic vesicles (OVs). Each vesicle subsequently folds over itself to form the double-layered optic cup, from which the mature eye derives. During this transition, cells of the OV are progressively specified toward three different fates: the retinal pigment epithelium (RPE), the neural retina, and the optic stalk. Recent studies have shown that folding of the zebrafish OV into a cup is in part driven by basal constriction of the cells of the future neural retina. During folding, however, RPE cells undergo an even more dramatic shape conversion that seems to entail the acquisition of unique properties. How these changes occur and whether they contribute to optic cup formation is still poorly understood. Here we will review present knowledge on RPE morphogenesis and discuss potential mechanisms that may explain such transformation using examples taken from embryonic Drosophila tissues that undergo similar shape changes. We will also put forward a hypothesis for optic cup folding that considers an active contribution from the RPE.

10.
Nat Commun ; 9(1): 4210, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297704

RESUMO

The original version of this Article contained an error in ref. 39, which incorrectly cited 'Fristrom, D. & Fristrom, J. W. in The Development of Drosophila melanogaster (eds. Bate, M. & Martinez-Arias, A.) II, (Cold spring harbor laboratory press, 1993)'. The correct reference is 'Condic, M.L, Fristrom, D. & Fristrom, J.W. Apical cell shape changes during Drosophila imaginal leg disc elongation: a novel morphogenetic mechanism. Development 111: 23-33 (1991)'. Furthermore, the last sentence of the fourth paragraph of the introduction incorrectly omitted citation of work by Rupprecht et al. The correct citation is given below. These errors have now been corrected in both the PDF and HTML versions of the Article. Rupprecht, J.F., Ong, K.H., Yin, J., Huang, A., Dinh, H.H., Singh, A.P., Zhang, S., Yu, W. & Saunders, T.E. Geometric constraints alter cell arrangements within curved epithelial tissues. Mol. Biol. Cell 28, 3582-3594 (2017).

11.
Nat Commun ; 9(1): 2960, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054479

RESUMO

As animals develop, tissue bending contributes to shape the organs into complex three-dimensional structures. However, the architecture and packing of curved epithelia remains largely unknown. Here we show by means of mathematical modelling that cells in bent epithelia can undergo intercalations along the apico-basal axis. This phenomenon forces cells to have different neighbours in their basal and apical surfaces. As a consequence, epithelial cells adopt a novel shape that we term "scutoid". The detailed analysis of diverse tissues confirms that generation of apico-basal intercalations between cells is a common feature during morphogenesis. Using biophysical arguments, we propose that scutoids make possible the minimization of the tissue energy and stabilize three-dimensional packing. Hence, we conclude that scutoids are one of nature's solutions to achieve epithelial bending. Our findings pave the way to understand the three-dimensional organization of epithelial organs.


Assuntos
Forma Celular , Células Epiteliais/citologia , Epitélio/embriologia , Epitélio/fisiologia , Modelos Biológicos , Animais , Fenômenos Biofísicos , Biologia Computacional , Drosophila , Feminino , Morfogênese , Glândulas Salivares/citologia , Peixe-Zebra
12.
J Dev Biol ; 6(1)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29615553

RESUMO

Over the last thirty years, fish models, such as the zebrafish and medaka, have become essential to pursue developmental studies and model human disease. Community efforts have led to the generation of wide collections of mutants, a complete sequence of their genomes, and the development of sophisticated genetic tools, enabling the manipulation of gene activity and labelling and tracking of specific groups of cells during embryonic development. When combined with the accessibility and optical clarity of fish embryos, these approaches have made of them an unbeatable model to monitor developmental processes in vivo and in real time. Over the last few years, live-imaging studies in fish have provided fascinating insights into tissue morphogenesis and organogenesis. This review will illustrate the advantages of fish models to pursue morphogenetic studies by highlighting the findings that, in the last decade, have transformed our understanding of eye morphogenesis.

13.
Front Neurosci ; 11: 721, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326547

RESUMO

The molecular bases of vertebrate eye formation have been extensively investigated during the past 20 years. This has resulted in the definition of the backbone of the gene regulatory networks controlling the different steps of eye development and has further highlighted a substantial conservation of these networks among vertebrates. Yet, the precise morphogenetic events allowing the formation of the optic cup from a small group of cells within the anterior neural plate are still poorly understood. It is also unclear if the morphogenetic events leading to eyes of very similar shape are indeed comparable among all vertebrates or if there are any species-specific peculiarities. Improved imaging techniques have enabled to follow how the eye forms in living embryos of a few vertebrate models, whereas the development of organoid cultures has provided fascinating tools to recapitulate tissue morphogenesis of other less accessible species. Here, we will discuss what these advances have taught us about eye morphogenesis, underscoring possible similarities and differences among vertebrates. We will also discuss the contribution of cell shape changes to this process and how morphogenetic and patterning mechanisms integrate to assemble the final architecture of the eye.

14.
Development ; 143(7): 1087-98, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893342

RESUMO

Maintaining neurogenesis in growing tissues requires a tight balance between progenitor cell proliferation and differentiation. In the zebrafish retina, neuronal differentiation proceeds in two stages with embryonic retinal progenitor cells (RPCs) of the central retina accounting for the first rounds of differentiation, and stem cells from the ciliary marginal zone (CMZ) being responsible for late neurogenesis and growth of the eye. In this study, we analyse two mutants with small eyes that display defects during both early and late phases of retinal neurogenesis. These mutants carry lesions in gdf6a, a gene encoding a BMP family member previously implicated in dorsoventral patterning of the eye. We show that gdf6a mutant eyes exhibit expanded retinoic acid (RA) signalling and demonstrate that exogenous activation of this pathway in wild-type eyes inhibits retinal growth, generating small eyes with a reduced CMZ and fewer proliferating progenitors, similar to gdf6a mutants. We provide evidence that RA regulates the timing of RPC differentiation by promoting cell cycle exit. Furthermore, reducing RA signalling in gdf6a mutants re-establishes appropriate timing of embryonic retinal neurogenesis and restores putative stem and progenitor cell populations in the CMZ. Together, our results support a model in which dorsally expressed gdf6a limits RA pathway activity to control the transition from proliferation to differentiation in the growing eye.


Assuntos
Fator 6 de Diferenciação de Crescimento/genética , Neurogênese/genética , Retina/embriologia , Tretinoína/metabolismo , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Ciclo Celular/genética , Proliferação de Células , Embrião não Mamífero/embriologia , Neurogênese/fisiologia , Transdução de Sinais/genética , Células-Tronco/citologia
15.
Development ; 142(22): 3933-42, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26428010

RESUMO

The earliest known determinants of retinal nasotemporal identity are the transcriptional regulators Foxg1, which is expressed in the prospective nasal optic vesicle, and Foxd1, which is expressed in the prospective temporal optic vesicle. Previous work has shown that, in zebrafish, Fgf signals from the dorsal forebrain and olfactory primordia are required to specify nasal identity in the dorsal, prospective nasal, optic vesicle. Here, we show that Hh signalling from the ventral forebrain is required for specification of temporal identity in the ventral optic vesicle and is sufficient to induce temporal character when activated in the prospective nasal retina. Consequently, the evaginating optic vesicles become partitioned into prospective nasal and temporal domains by the opposing actions of Fgfs and Shh emanating from dorsal and ventral domains of the forebrain primordium. In absence of Fgf activity, foxd1 expression is established irrespective of levels of Hh signalling, indicating that the role of Shh in promoting foxd1 expression is only required in the presence of Fgf activity. Once the spatially complementary expression of foxd1 and foxg1 is established, the boundary between expression domains is maintained by mutual repression between Foxd1 and Foxg1.


Assuntos
Padronização Corporal/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Retina/embriologia , Transdução de Sinais/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Carbocianinas , Fatores de Transcrição Forkhead , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Prosencéfalo/metabolismo
16.
Curr Biol ; 24(19): 2217-27, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25201686

RESUMO

BACKGROUND: Although left-right asymmetries are common features of nervous systems, their developmental bases are largely unknown. In the zebrafish epithalamus, dorsal habenular neurons adopt medial (dHbm) and lateral (dHbl) subnuclear character at very different frequencies on the left and right sides. The left-sided parapineal promotes the elaboration of dHbl character in the left habenula, albeit by an unknown mechanism. Likewise, the genetic pathways acting within habenular neurons to control their asymmetric differentiated character are unknown. RESULTS: In a forward genetic screen for mutations that result in loss of habenular asymmetry, we identified two mutant alleles of tcf7l2, a gene that encodes a transcriptional regulator of Wnt signaling. In tcf7l2 mutants, most neurons on both sides differentiate with dHbl identity. Consequently, the habenulae develop symmetrically, with both sides adopting a pronounced leftward character. Tcf7l2 acts cell automously in nascent equipotential neurons, and on the right side, it promotes dHbm and suppresses dHbl differentiation. On the left, the parapineal prevents this Tcf7l2-dependent process, thereby promoting dHbl differentiation. CONCLUSIONS: Tcf7l2 is essential for lateralized fate selection by habenular neurons that can differentiate along two alternative pathways, thereby leading to major neural circuit asymmetries.


Assuntos
Diferenciação Celular , Habenula/embriologia , Neurônios/fisiologia , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica , Habenula/citologia , Neurônios/citologia , Transdução de Sinais , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/metabolismo
18.
Dev Neurobiol ; 74(8): 759-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24115566

RESUMO

Wnts are essential for a multitude of processes during embryonic development and adult homeostasis. The molecular structure of the Wnt pathway is extremely complex, and it keeps growing as new molecular components and novel interactions are uncovered. Recent studies have advanced our understanding on how the diverse molecular outcomes of the Wnt pathway are integrated during organ development, an integration that is also essential, although mechanistically poorly understood, during the formation of the anterior part of the nervous system, the forebrain. In this article, the author has summarized these findings and discussed their implications for forebrain development. A special emphasis has been put forth on studies performed in the zebrafish as this model system has been instrumental for our current understanding of forebrain patterning.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/fisiologia , Placa Neural/embriologia , Via de Sinalização Wnt/fisiologia , Animais , Padronização Corporal , Olho/embriologia , Olho/metabolismo , Humanos , Placa Neural/metabolismo
19.
Dev Cell ; 27(3): 293-305, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24209576

RESUMO

Using high-resolution live imaging in zebrafish, we show that presumptive eye cells acquire apicobasal polarity and adopt neuroepithelial character prior to other regions of the neural plate. Neuroepithelial organization is first apparent at the margin of the eye field, whereas cells at its core have mesenchymal morphology. These core cells subsequently intercalate between the marginal cells contributing to the bilateral expansion of the optic vesicles. During later evagination, optic vesicle cells shorten, drawing their apical surfaces laterally relative to the basal lamina, resulting in further laterally directed evagination. The early neuroepithelial organization of the eye field requires Laminin1, and ectopic Laminin1 can redirect the apicobasal orientation of eye field cells. Furthermore, disrupting cell polarity through combined abrogation of the polarity protein Pard6γb and Laminin1 severely compromises optic vesicle evagination. Our studies elucidate the cellular events underlying early eye morphogenesis and provide a framework for understanding epithelialization and complex tissue formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Embrião não Mamífero/citologia , Olho/citologia , Laminina/metabolismo , Morfogênese , Células Neuroepiteliais/citologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Polaridade Celular , Células Cultivadas , Embrião não Mamífero/metabolismo , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Immunoblotting , Técnicas Imunoenzimáticas , Laminina/genética , Células Neuroepiteliais/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
20.
Development ; 140(20): 4193-202, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24026122

RESUMO

During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis.


Assuntos
Efrinas/metabolismo , Olho/embriologia , Placa Neural/embriologia , Prosencéfalo/embriologia , Receptores da Família Eph/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Diencéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Morfogênese , Transdução de Sinais , Telencéfalo/embriologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...